Skip to main content

Revisiting the Top Ten Ways that DDDAS Can Save the World with an Update in the BioInfoSciences Area and on the Energy Bridge

  • Conference paper
  • First Online:
Dynamic Data Driven Applications Systems (DDDAS 2020)

Abstract

Three years ago (DDDAS at the 2017 ASME Meeting) we looked at the speaker’s top ten list of how DDDAS can save the world. Now as we adjust to life under the COVID-19 pandemic and a 2020 Conference in the virtual format, our world literally seeks rescue/saving. Under these circumstances, we revisit the top ten list and first consider briefly the dynamic data-driven aspects of the COVID-19 challenges from the speaker’s experiences in the biotech/pharma industry and then move on to the more optimistic challenge of securing our energy future and life after the pandemic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Mason, C.F., Muehlenbachs, L.A., Olmstead, S.M.: The economics of shale gas development. Ann. Rev. Resour. Econ. 7(1), 269–289 (2015)

    Google Scholar 

  2. Blasch, E., Ravela, S., Aved, A.: Handbook of Dynamic Data Driven Applications Systems. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-95504-9

  3. Darema, F.: New software architecture for complex applications development and runtime support. Int. J. High-Perform. Comput. (Special Issue on Programming Environments, Clusters, and Computational Grids for Scientific Computing) 14 (2000)

    Google Scholar 

  4. Smith, P.J.: Clean and secure energy from domestic oil shale and oil sands resources-quarterly progress report July 2011 to September 2011

    Google Scholar 

  5. Parashar, M., et al.: Application of grid-enabled technologies for solving optimization problems in data-driven reservoir studies. In: Bubak, M., van Albada, G.D., Sloot, P.M.A., Dongarra, J. (eds.) ICCS 2004. LNCS, vol. 3038, pp. 805–812. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24688-6_104

    Chapter  Google Scholar 

  6. Oden, J.T., et al.: Revolutionizing engineering science through simulation: A report of the national science foundation blue ribbon panel on simulation-based engineering science. National Science Foundation, Arlington, VA (2006)

    Google Scholar 

  7. Douglas, C.C.: An open framework for dynamic big-data-driven application systems (DDDAS) development. Proc. Comput. Sci. 29, 1246–1255 (2014)

    Google Scholar 

  8. Parashar, M., et al.: Towards dynamic data-driven optimization of oil well placement. In: Sunderam, V.S., van Albada, G.D., Sloot, P.M.A., Dongarra, J.J. (eds.) ICCS 2005. LNCS, vol. 3515, pp. 656–663. Springer, Heidelberg (2005). https://doi.org/10.1007/11428848_85

    Chapter  Google Scholar 

  9. Yan, J., Wang, L., Chen, L., Zhao, L., Huang, B.: A dynamic remote sensing data-driven approach for oil spill simulation in the sea. Remote Sens. 7(6), 7105–7125 (2015)

    Article  Google Scholar 

  10. Chen, X., Zhang, D., Wang, Y., Wang, L., Zomaya, A., Hu, S.: Offshore oil spill monitoring and detection: improving risk management for offshore petroleum cyber-physical systems. In: 2017 IEEE/ACM International Conference on Computer-Aided Design (ICCAD), pp. 841–846. IEEE (2017)

    Google Scholar 

  11. Pecher, P.K.: A DDDAS framework for managing online transportation systems. Ph.D. thesis, Georgia Institute of Technology (2018)

    Google Scholar 

  12. Wang, S., Ellett, K.M., Ardekani, A.M.: Assessing the utility of high-level CO2 storage and utilization resource estimates for CCS system modelling. Energy Proc. 114, 4658–4665 (2017)

    Google Scholar 

  13. Bello, O., et al.: Application of artificial intelligence techniques in drilling system design and operations: a state of the art review and future research pathways. In: SPE Nigeria Annual International Conference and Exhibition. Society of Petroleum Engineers (2016)

    Google Scholar 

  14. Sandrea, I., Sandrea, R.: Recovery factors leave vast target for EOR technologies. Oil Gas J. 105(41), 44–48 (2007)

    Google Scholar 

  15. Muggeridge, A., et al.: Recovery rates, enhanced oil recovery and technological limits. Philos. Trans. Roy. Soc. A: Math. Phy. Eng. Sci. 372(2006), 20120320 (2014)

    Article  Google Scholar 

  16. Shukla, A., Karki, H.: Application of robotics in offshore oil and gas industry a review part II. Robot. Auton. Syst. 75, 508–524 (2016)

    Article  Google Scholar 

  17. Agwu, O.E., Akpabio, J.U., Alabi, S.B., Dosunmu, A.: Artificial intelligence techniques and their applications in drilling fluid engineering: a review. J. Pet. Sci. Eng. 167, 300–315 (2018)

    Google Scholar 

  18. Khan, W.Z., Aalsalem, M.Y., Khan, M.K., Hossain, Md.S., Atiquzzaman, M.: A reliable internet of things based architecture for oil and gas industry. In: 2017 19th International Conference on Advanced Communication Technology (ICACT), pp. 705–710. IEEE (2017)

    Google Scholar 

  19. Douglas, C.C., et al.: Advantages of multiscale detection of defective pills during manufacturing. In: Zhang, W., Chen, Z., Douglas, C.C., Tong, W. (eds.) HPCA 2009. LNCS, vol. 5938, pp. 8–16. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-11842-5_2

    Chapter  Google Scholar 

  20. Li, C.-S., Darema, F., Chang, V.: Distributed behavior model orchestration in cognitive internet of things solution. Enterp. Inf. Syst. 12(4), 414–434 (2018)

    Article  Google Scholar 

  21. Hu, X.: Dynamic data-driven simulation: connecting real-time data with simulation. In: Yilmaz, L. (ed.) Concepts and Methodologies for Modeling and Simulation. SFMA, pp. 67–84. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-15096-3_4

    Chapter  Google Scholar 

  22. Priyanka, E.B., Maheswari, C., Thangavel, S.: A smart-integrated IoT module for intelligent transportation in oil industry. Int. J. Numer. Model.: Electron. Netw. Devices Fields

    Google Scholar 

  23. Bonomi, F., Milito, R., Natarajan, P., Zhu, J.: Fog computing: a platform for internet of things and analytics. In: Bessis, N., Dobre, C. (eds.) Big Data and Internet of Things: A Roadmap for Smart Environments. SCI, vol. 546, pp. 169–186. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-05029-4_7

    Chapter  Google Scholar 

  24. Goldberg, D.E., Kuo, C.H.: Genetic algorithms in pipeline optimization. J. Comput. Civ. Eng. 1(2), 128–141 (1987)

    Google Scholar 

  25. Nygreen, B., Haugen, K.: Applied mathematical programming in norwegian petroleum field and pipeline development: some highlights from the last 30 years. In: Bjørndal, E., Bjørndal, M., Pardalos, P., Rönnqvist, M. (eds.) Energy, Natural Resources and Environmental Economics. ENERGY, pp. 59–69 (2010). Springer, Heidelberg. https://doi.org/10.1007/978-3-642-12067-1_4

  26. Bohannon, J.M., et al.: A linear programming model for optimum development of multi-reservoir pipeline systems. J. Pet. Technol. 22(11), 1–429 (1970)

    Google Scholar 

  27. Neiro, S.M., Pinto, J.M.: A general modeling framework for the operational planning of petroleum supply chains. Comput. Chem. Eng. 28(6–7), 871–896 (2004)

    Google Scholar 

  28. Patel, H., Prajapati, D., Mahida, D., Shah, M.: Transforming petroleum downstream sector through big data: a holistic review. J. Pet. Explor. Prod. Technol. 10, 2601–2611 (2020). https://doi.org/10.1007/s13202-020-00889-2

  29. Ramapriya, G.M., Tawarmalani, M., Agrawal, R.: Thermal coupling links to liquid-only transfer streams: an enumeration method for new FTC dividing wall columns. AIChE J. 62(4), 1200–1211 (2016)

    Google Scholar 

  30. Di Iorio, J.R., et al.: The dynamic nature of brønsted acid sites in cu–zeolites during no x selective catalytic reduction: quantification by gas-phase ammonia titration. Top. Catal. 58(7–9), 424–434 (2015). https://doi.org/10.1007/s11244-015-0387-8

  31. Childers, D.J., Schweitzer, N.M., Shahari, S.M.K., Rioux, R.M., Miller, J.T., Meyer, R.J.: Modifying structure-sensitive reactions by addition of Zn to Pd. J. Catal. 318, 75–84 (2014)

    Google Scholar 

Download references

Acknowledgement

We thank the CISTAR NSF-ERC team and Director Fabio Ribeiro for insightful discussions on the downstream shale revolution. We also thank Nathan Schultheiss for extensive discussions on the current state of the upstream and midstream O&G; this extended abstract is a summary version of a longer DDDAS O&G chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sangtae Kim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, S., Kim, S. (2020). Revisiting the Top Ten Ways that DDDAS Can Save the World with an Update in the BioInfoSciences Area and on the Energy Bridge. In: Darema, F., Blasch, E., Ravela, S., Aved, A. (eds) Dynamic Data Driven Applications Systems. DDDAS 2020. Lecture Notes in Computer Science(), vol 12312. Springer, Cham. https://doi.org/10.1007/978-3-030-61725-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-61725-7_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-61724-0

  • Online ISBN: 978-3-030-61725-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics