Abstract
We study the Steiner tree problem on map graphs, which substantially generalize planar graphs as they allow arbitrarily large cliques. We obtain a PTAS for Steiner tree on map graphs, which builds on the result for planar edge weighted instances of Borradaile et al.
The Steiner tree problem on map graphs can be casted as a special case of the planar node-weighted Steiner tree problem, for which only a 2.4-approximation is known. We prove and use a contraction decomposition theorem for planar node weighted instances. This readily reduces the problem of finding a PTAS for planar node-weighted Steiner tree to finding a spanner, \(\textit{i.e.}\), a constant-factor approximation containing a nearly optimum solution. Finally, we pin-point places where known techniques for constructing such spanner fail on node weighted instances and further progress requires new ideas.
The first three authors were supported by the NCN grant number 2015/18/E/ST6/00456.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Arora, S., Grigni, M., Karger, D.R., Klein, P.N., Woloszyn, A.: A polynomial-time approximation scheme for weighted planar graph TSP. In: Proceedings of the Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, 25–27 January 1998, San Francisco, California, USA, pp. 33–41 (1998)
Baker, B.S.: Approximation algorithms for np-complete problems on planar graphs. J. ACM 41(1), 153–180 (1994)
Bateni, M., Chekuri, C., Ene, A., Hajiaghayi, M.T., Korula, N., Marx, D.: Prize-collecting Steiner problems on planar graphs. In: Proceedings of the Twenty-Second Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2011, San Francisco, California, USA, January 23–25, 2011, pp. 1028–1049 (2011)
Bateni, M., Demaine, E.D., Hajiaghayi, M., Marx, D.: A PTAS for planar group Steiner tree via spanner bootstrapping and prize collecting. In: Proceedings of the 48th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2016, Cambridge, MA, USA, 18–21 June 2016, pp. 570–583 (2016)
Bateni, M., Farhadi, A., Hajiaghayi, M.: Polynomial-time approximation scheme for minimum k-cut in planar and minor-free graphs. In: Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2019, San Diego, California, USA, 6–9 January 2019, pp. 1055–1068 (2019)
Bateni, M., Hajiaghayi, M.T., Marx, D.: Approximation schemes for Steiner forest on planar graphs and graphs of bounded treewidth. J. ACM 58(5), 21:1–21:37 (2011)
Berman, P., Yaroslavtsev, G.: Primal-dual approximation algorithms for node-weighted network design in planar graphs. In: Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques - 15th International Workshop, APPROX 2012, and 16th International Workshop, RANDOM 2012, Cambridge, MA, USA, 15–17 August 2012. Proceedings, pp. 50–60 (2012)
Borradaile, G., Klein, P., Mathieu, C.: An o(n log n) approximation scheme for Steiner tree in planar graphs. ACM Trans. Algorithms 5, 31:1–31:31 (2009)
Buchanan, A., Wang, Y., Butenko, S.: Algorithms for node-weighted Steiner tree and maximum-weight connected subgraph. Networks 72(2), 238–248 (2018)
Byrka, J., Grandoni, F., Rothvoß, T., Sanità, L.: Steiner tree approximation via iterative randomized rounding. J. ACM 60(1), 6:1–6:33 (2013)
Byrka, J., Lewandowski, M., Meesum, S.M., Spoerhase, J., Uniyal, S.: PTAS for steiner tree on map graphs. CoRR abs/1912.00717 (2019), http://arxiv.org/abs/1912.00717
Cabello, S., Gajser, D.: Simple ptas’s for families of graphs excluding a minor. Discrete Appl. Math. 189, 41–48 (2015)
Chen, Z., Grigni, M., Papadimitriou, C.H.: Map graphs. J. ACM 49(2), 127–138 (2002)
Chimani, M., Mutzel, P., Zey, B.: Improved Steiner tree algorithms for bounded treewidth. J. Discrete Algorithms 16, 67–78 (2012)
Cohen-Addad, V., Klein, P.N., Mathieu, C.: Local search yields approximation schemes for k-means and k-median in euclidean and minor-free metrics. SIAM J. Comput. 48(2), 644–667 (2019)
Demaine, E.D., Hajiaghayi, M.T., Klein, P.N.: Node-weighted Steiner tree and group Steiner tree in planar graphs. ACM Trans. Algorithms 10(3), 13:1–13:20 (2014)
Demaine, E.D., Hajiaghayi, M.: The bidimensionality theory and its algorithmic applications. Comput. J. 51(3), 292–302 (2008)
Dreyfus, S.E., Wagner, R.A.: The Steiner problem in graphs. Networks 1(3), 195–207 (1971)
Eisenstat, D., Klein, P.N., Mathieu, C.: An efficient polynomial-time approximation scheme for Steiner forest in planar graphs. In: Proceedings of the Twenty-Third Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2012, Kyoto, Japan, 17–19 January 2012, pp. 626–638 (2012)
Guha, S., Moss, A., Naor, J., Schieber, B.: Efficient recovery from power outage (extended abstract). In: Proceedings of the Thirty-First Annual ACM Symposium on Theory of Computing, 1–4 May 1999, Atlanta, Georgia, USA, pp. 574–582 (1999)
Kammer, F., Tholey, T.: Approximate tree decompositions of planar graphs in linear time. Theoret. Comput. Sci. 645, 60–90 (2016)
Klein, P.N.: A subset spanner for planar graphs: with application to subset TSP. In: Proceedings of the 38th Annual ACM Symposium on Theory of Computing, Seattle, WA, USA, 21–23 May 2006, pp. 749–756 (2006)
Klein, P.N.: A linear-time approximation scheme for TSP in undirected planar graphs with edge-weights. SIAM J. Comput. 37(6), 1926–1952 (2008)
Klein, P.N., Ravi, R.: A nearly best-possible approximation algorithm for node-weighted Steiner trees. J. Algorithms 19(1), 104–115 (1995)
Lipton, R.J., Tarjan, R.E.: Applications of a planar separator theorem. SIAM J. Comput. 9(3), 615–627 (1980)
Moldenhauer, C.: Primal-dual approximation algorithms for node-weighted Steiner forest on planar graphs. Inf. Comput. 222, 293–306 (2013)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Byrka, J., Lewandowski, M., Meesum, S.M., Spoerhase, J., Uniyal, S. (2020). PTAS for Steiner Tree on Map Graphs. In: Kohayakawa, Y., Miyazawa, F.K. (eds) LATIN 2020: Theoretical Informatics. LATIN 2021. Lecture Notes in Computer Science(), vol 12118. Springer, Cham. https://doi.org/10.1007/978-3-030-61792-9_1
Download citation
DOI: https://doi.org/10.1007/978-3-030-61792-9_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-61791-2
Online ISBN: 978-3-030-61792-9
eBook Packages: Computer ScienceComputer Science (R0)