Skip to main content

Farthest Color Voronoi Diagrams: Complexity and Algorithms

  • Conference paper
  • First Online:
LATIN 2020: Theoretical Informatics (LATIN 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12118))

Included in the following conference series:

Abstract

The farthest-color Voronoi diagram (FCVD) is a farthest-site Voronoi structure defined on a family \(\mathcal {P} \) of m point-clusters in the plane, where the total number of points is n. The FCVD finds applications in problems related to color spanning objects and facility location. We identify structural properties of the FCVD, refine its combinatorial complexity bounds, and list conditions under which the diagram has O(n) complexity. We show that the diagram may have complexity \(\varOmega (n+m^2)\) even if clusters have disjoint convex hulls. We present construction algorithms with running times ranging from \(O(n\log n)\), when certain conditions are met, to \(O((n+s(\mathcal {P} ))\log ^3n)\) in general, where s(P) is a parameter reflecting the number of straddles between pairs of clusters in \(\mathcal {P} \) (\(s(P)\in O(mn)\)). A pair of points \(q_1,q_2\in Q\) is said to straddle \(p_1,p_2\in P\) if the line segment \(q_1q_2\) intersects (straddles) the line through \(p_1,p_2\) and the disks through \((p_1,p_2,q_1)\) and \((p_1,p_2,q_2)\) contain no points of PQ. The complexity of the diagram is shown to be \(O(n+s(\mathcal {P} ))\).

A preliminary version of this work was presented at EuroCG 2019. I. M. and E. P. were supported in part by the Swiss National Science Foundation, project SNF 200021E-154387. V. S. and R. S. were supported by projects MINECO MTM2015-63791-R and Gen. Cat. 2017SGR1640. This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 734922.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://compgeom.inf.usi.ch/FCVD/lowerbound.

References

  1. Abellanas, M., et al.: The farthest color Voronoi diagram and related problems. In: Proceedings of the 17th European Workshop on Computational Geometry, pp. 113–116 (2001)

    Google Scholar 

  2. Acharyya, A., Nandy, S.C., Roy, S.: Minimum width color spanning annulus. Theor. Comput. Sci. 725, 16–30 (2018)

    Article  MathSciNet  Google Scholar 

  3. Arkin, E.M., et al.: Bichromatic 2-center of pairs of points. Comput. Geom. 48(2), 94–107 (2015)

    Article  MathSciNet  Google Scholar 

  4. Arseneva, E., Papadopoulou, E.: Randomized incremental construction for the Hausdorff Voronoi diagram revisited and extended. J. Comb. Optim. 37(2), 579–600 (2018). https://doi.org/10.1007/s10878-018-0347-x

    Article  MathSciNet  MATH  Google Scholar 

  5. Aurenhammer, F., Klein, R., Lee, D.T.: Voronoi Diagrams and Delaunay Triangulations. World Scientific, Singapore (2013)

    Book  Google Scholar 

  6. Bae, S.W.: On linear-sized farthest-color Voronoi diagrams. IEICE Trans. Inf. Syst. 95(3), 731–736 (2012)

    Article  Google Scholar 

  7. Bae, S.W., Lee, C., Choi, S.: On exact solutions to the Euclidean bottleneck Steiner tree problem. Inf. Process. Lett. 110(16), 672–678 (2010)

    Article  MathSciNet  Google Scholar 

  8. Bohler, C., Cheilaris, P., Klein, R., Liu, C.H., Papadopoulou, E., Zavershynskyi, M.: On the complexity of higher order abstract Voronoi diagrams. Comput. Geom. 48(8), 539–551 (2015)

    Article  MathSciNet  Google Scholar 

  9. Cheilaris, P., Khramtcova, E., Langerman, S., Papadopoulou, E.: A randomized incremental algorithm for the Hausdorff Voronoi diagram of non-crossing clusters. Algorithmica 76(4), 935–960 (2016). https://doi.org/10.1007/s00453-016-0118-y

    Article  MathSciNet  MATH  Google Scholar 

  10. Claverol, M., Khramtcova, E., Papadopoulou, E., Saumell, M., Seara, C.: Stabbing circles for sets of segments in the plane. Algorithmica 80(3), 849–884 (2018). https://doi.org/10.1007/s00453-017-0299-z

    Article  MathSciNet  MATH  Google Scholar 

  11. Dehne, F., Maheshwari, A., Taylor, R.: A coarse grained parallel algorithm for Hausdorff Voronoi diagrams. In: Proceedings of the 35th International Conference on Parallel Processing, ICPP, pp. 497–504. IEEE (2006)

    Google Scholar 

  12. Ding, H., Xu, J.: Solving the chromatic cone clustering problem via minimum spanning sphere. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011. LNCS, vol. 6755, pp. 773–784. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22006-7_65

    Chapter  Google Scholar 

  13. Edelsbrunner, H., Guibas, L.J., Sharir, M.: The upper envelope of piecewise linear functions: algorithms and applications. Discrete Comput. Geom. 4(1), 311–336 (1989). https://doi.org/10.1007/BF02187733

    Article  MathSciNet  MATH  Google Scholar 

  14. Fleischer, R., Xu, X.: Computing minimum diameter color-spanning sets. In: Lee, D.-T., Chen, D.Z., Ying, S. (eds.) FAW 2010. LNCS, vol. 6213, pp. 285–292. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14553-7_27

    Chapter  Google Scholar 

  15. Huttenlocher, D.P., Kedem, K., Sharir, M.: The upper envelope of Voronoi surfaces and its applications. Discrete Comput. Geom. 9(3), 267–291 (1993). https://doi.org/10.1007/BF02189323

    Article  MathSciNet  MATH  Google Scholar 

  16. Iacono, J., Khramtcova, E., Langerman, S.: Searching edges in the overlap of two plane graphs. WADS 2017. LNCS, vol. 10389, pp. 473–484. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-62127-2_40

    Chapter  Google Scholar 

  17. Jørgensen, A., Löffler, M., Phillips, J.M.: Geometric computations on indecisive points. In: Dehne, F., Iacono, J., Sack, J.-R. (eds.) WADS 2011. LNCS, vol. 6844, pp. 536–547. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22300-6_45

    Chapter  Google Scholar 

  18. Khanteimouri, P., Mohades, A., Abam, M.A., Kazemi, M.R.: Computing the smallest color-spanning axis-parallel square. In: Cai, L., Cheng, S.-W., Lam, T.-W. (eds.) ISAAC 2013. LNCS, vol. 8283, pp. 634–643. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-45030-3_59

    Chapter  Google Scholar 

  19. Klein, R.: Concrete and Abstract Voronoi Diagrams. LNCS, vol. 400. Springer, Heidelberg (1989). https://doi.org/10.1007/3-540-52055-4

    Book  MATH  Google Scholar 

  20. Lee, C., Shin, D., Bae, S.W., Choi, S.: Best and worst-case coverage problems for arbitrary paths in wireless sensor networks. Ad Hoc Netw. 11(6), 1699–1714 (2013)

    Article  Google Scholar 

  21. Mehlhorn, K., Meiser, S., Rasch, R.: Furthest site abstract Voronoi diagrams. Int. J. Comput. Geom. Appl. 11(06), 583–616 (2001)

    Article  MathSciNet  Google Scholar 

  22. Okabe, A., Boots, B., Sugihara, K., Chiu, S.N.: Spatial Tessellations: Concepts and Applications of Voronoi Diagrams, vol. 501. Wiley, Hoboken (2009)

    MATH  Google Scholar 

  23. Papadopoulou, E.: The Hausdorff Voronoi diagram of point clusters in the plane. Algorithmica 40(2), 63–82 (2004). https://doi.org/10.1007/s00453-004-1095-0

    Article  MathSciNet  MATH  Google Scholar 

  24. Papadopoulou, E., Lee, D.T.: The Hausdorff Voronoi diagram of polygonal objects: a divide and conquer approach. Int. J. Comput. Geom. Appl. 14(06), 421–452 (2004)

    Article  MathSciNet  Google Scholar 

  25. Veltkamp, R.C., Hagedoorn, M.: State of the art in shape matching. In: Lew, M.S. (ed.) Principles of Visual Information Retrieval. ACVPR, pp. 87–119. Springer, London (2001). https://doi.org/10.1007/978-1-4471-3702-3_4

    Chapter  Google Scholar 

  26. Zhang, D., Chee, Y.M., Mondal, A., Tung, A.K., Kitsuregawa, M.: Keyword search in spatial databases: towards searching by document. In: Proceedings of the 25th International Conference on Data Engineering, pp. 688–699. IEEE (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evanthia Papadopoulou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mantas, I., Papadopoulou, E., Sacristán, V., Silveira, R.I. (2020). Farthest Color Voronoi Diagrams: Complexity and Algorithms. In: Kohayakawa, Y., Miyazawa, F.K. (eds) LATIN 2020: Theoretical Informatics. LATIN 2021. Lecture Notes in Computer Science(), vol 12118. Springer, Cham. https://doi.org/10.1007/978-3-030-61792-9_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-61792-9_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-61791-2

  • Online ISBN: 978-3-030-61792-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics