Skip to main content

Hardness of Variants of the Graph Coloring Game

  • Conference paper
  • First Online:
LATIN 2020: Theoretical Informatics (LATIN 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12118))

Included in the following conference series:

Abstract

Very recently, a long-standing open question proposed by Bodlaender in 1991 was answered: the graph coloring game is PSPACE-complete. In 2019, Andres and Lock proposed five variants of the graph coloring game and left open the question of PSPACE-hardness related to them. In this paper, we prove that these variants are PSPACE-complete for the graph coloring game and also for the greedy coloring game, even if the number of colors is the chromatic number. Finally, we also prove that a connected version of the graph coloring game, proposed by Charpentier et al. in 2019, is PSPACE-complete.

R. Sampaio—Supported by CAPES [88887.143992/2017-00] DAAD Probral and [88881.197438/2018-01] STIC AmSud, CNPq Universal [401519/2016-3], [425297/2016-0] and [437841/2018-9], and FUNCAP [4543945/2016] Pronem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Andres, D., Lock, E.: Characterising and recognising game-perfect graphs. Discrete Math. Theoret. Comput. Sci. 21(1) (2019). https://dmtcs.episciences.org/5499

  2. Bodlaender, H.L.: On the complexity of some coloring games. In: Möhring, R.H. (ed.) WG 1990. LNCS, vol. 484, pp. 30–40. Springer, Heidelberg (1991). https://doi.org/10.1007/3-540-53832-1_29

    Chapter  Google Scholar 

  3. Bohman, T., Frieze, A., Sudakov, B.: The game chromatic number of random graphs. Random Struct. Algorithms 32(2), 223–235 (2008)

    Article  MathSciNet  Google Scholar 

  4. Charpentier, C., Hocquard, H., Sopena, E., Zhu, X.: A connected version of the graph coloring game. In: Proceedings of the 9th Slovenian International Conference on Graph Theory (Bled 2019) (2019). arXiv:1907.12276

  5. Costa, E., Pessoa, V.L., Sampaio, R., Soares, R.: PSPACE-hardness of two graph coloring games. In: Electronic Notes in Theoretical Computer Science, vol. 346, pp. 333–344, Proceedings of the 10th Latin and American Algorithms, Graphs and Optimization Symposium, LAGOS 2019 (2019)

    Google Scholar 

  6. Dinski, T., Zhu, X.: A bound for the game chromatic number of graphs. Discrete Math. 196(1), 109–115 (1999)

    Article  MathSciNet  Google Scholar 

  7. Faigle, U., Kern, U., Kierstead, H., Trotter, W.: On the game chromatic number of some classes of graphs. Ars Combinatoria 35, 143–150 (1993)

    MathSciNet  MATH  Google Scholar 

  8. Gardner, M.: Mathematical games. Sci. Am. 244(4), 18–26 (1981)

    Article  Google Scholar 

  9. Havet, F., Zhu, X.: The game Grundy number of graphs. J. Comb. Optim. 25(4), 752–765 (2013)

    Article  MathSciNet  Google Scholar 

  10. Hearn, R.A., Demaine, E.D.: Games, Puzzles, and Computation. A. K. Peters Ltd., Natick (2009)

    Book  Google Scholar 

  11. Kierstead, H.A., Trotter, W.T.: Planar graph coloring with an uncooperative partner. J. Graph Theory 18(6), 569–584 (1994)

    Article  MathSciNet  Google Scholar 

  12. Krawczyk, T., Walczak, B.: Asymmetric coloring games on incomparability graphs. Electron. Notes Discrete Math. 49, 803–811 (2015)

    Article  Google Scholar 

  13. Nakprasit, K.M., Nakprasit, K.: The game coloring number of planar graphs with a specific girth. Graphs Comb. 34(2), 349–354 (2018)

    Article  MathSciNet  Google Scholar 

  14. Schaefer, T.J.: On the complexity of some two-person perfect-information games. J. Comput. Syst. Sci. 16(2), 185–225 (1978)

    Article  MathSciNet  Google Scholar 

  15. Sekiguchi, Y.: The game coloring number of planar graphs with a given girth. Discrete Math. 330, 11–16 (2014)

    Article  MathSciNet  Google Scholar 

  16. Sidorowicz, E.: The game chromatic number and the game colouring number of cactuses. Inf. Process. Lett. 102(4), 147–151 (2007)

    Article  MathSciNet  Google Scholar 

  17. Zhu, X.: The game coloring number of planar graphs. J. Comb. Theory, Ser. B 75(2), 245–258 (1999)

    Article  MathSciNet  Google Scholar 

  18. Zhu, X.: The game coloring number of pseudo partial k-trees. Discrete Math. 215(1), 245–262 (2000)

    Article  MathSciNet  Google Scholar 

  19. Zhu, X.: Refined activation strategy for the marking game. J. Comb. Theory, Ser. B 98(1), 1–18 (2008)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rudini Sampaio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Marcilon, T., Martins, N., Sampaio, R. (2020). Hardness of Variants of the Graph Coloring Game. In: Kohayakawa, Y., Miyazawa, F.K. (eds) LATIN 2020: Theoretical Informatics. LATIN 2021. Lecture Notes in Computer Science(), vol 12118. Springer, Cham. https://doi.org/10.1007/978-3-030-61792-9_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-61792-9_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-61791-2

  • Online ISBN: 978-3-030-61792-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics