Skip to main content

Transmitting once to Elect a Leader on Wireless Networks

  • Conference paper
  • First Online:
LATIN 2020: Theoretical Informatics (LATIN 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12118))

Included in the following conference series:

Abstract

Distributed wireless network’s devices are battery-powered most of the time. Transmitting a message uses more energy than receiving one which spends more energy than internal computations. Therefore in this paper, we will focus on the energy complexity of leader election, a fundamental distributed computing problem. As the message’s size impacts on the energy consumption, we highlight that our algorithms have almost optimal time complexities: each device is allowed to send only once \(1-bit\) message and to listen to the network during at most 2 time slots. We will firstly work on Radio Networks on which the devices can detect when a node transmits alone: RNstrongCD where both senders and receivers have collision detection capability, RNsenderCD, RNreceiverCD and RNnoCD. If the nodes know their number n, our algorithm elects a leader in optimal \(O(\log n)\) time slots with a probability of \(1-1/poly(n)\). Then, if all nodes do not know n but know its upper bound u such that \(\log u = \Theta (\log n)\), it has \(O(\log ^{2}{n})\) time complexity on RNnoCD and RNsenderCD. On RNreceiverCD and RNstrongCD, it has \(O(\log ^{(1+\alpha )}{n})\) time complexity where \(\alpha \in ]0, 1[\) is constant. For the Beeping Networks model on which the devices cannot detect single transmissions, it has \(O(n^{\alpha })\) time complexity with probability \(1-1/poly(n)\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    When it transmits or listens to the network.

  2. 2.

    The underlying graph of the network is complete.

  3. 3.

    An event \(\varepsilon _n\) occurs w.h.p. if \(\mathbb {P}[\varepsilon _n]\ge 1-n^{-c}\) where c is a positive constant.

  4. 4.

    \(\log ^\varepsilon n = (\log n)^\varepsilon \) for any constant \(\varepsilon \).

  5. 5.

    \(\log ^{*}n\) represents the iterated logarithm of n.

  6. 6.

    A random value is said to be unique if it is held by exactly one node.

  7. 7.

    If X is a r.v. distributed as G(1/2), \(q_k=\mathbb {P}[X = k] = 2^{-k-1}\) for all \(k\ge 0\).

  8. 8.

    At each time slot \(t_0, t_1, \dots , t_g\), each node \(s_i\) checks if the corresponding value \(I_g\) in the interval \(I\) is equal to its \(X_i\), then transmits or does some computations at \(t_g\).

  9. 9.

    Listening to verify an election at the time slot.

  10. 10.

    \(UAR(B)\) returns one value picked uniformly at random from the set B.

  11. 11.

    Sending a message at the time slot if a leader has already been elected.

References

  1. Aby, A.T., Guitton, A., Lafourcade, P., Misson, M.: SLACK-MAC: adaptive MAC protocol for low duty-cycle wireless sensor networks. In: Mitton, N., Kantarci, M.E., Gallais, A., Papavassiliou, S. (eds.) ADHOCNETS 2015. LNICST, vol. 155, pp. 69–81. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-25067-0_6

    Chapter  Google Scholar 

  2. Afek, Y., Alon, N., Bar-Joseph, Z., Cornejo, A., Haeupler, B., Kuhn, F.: Beeping a maximal independent set. Distrib. Comput. 26(4), 195–208 (2013)

    Article  Google Scholar 

  3. Barnes, M., Conway, C., Mathews, J., Arvind, D.: ENS: an energy harvesting wireless sensor network platform. In: Proceedings of the 5th International Conference on Systems and Networks Communications, pp. 83–87. IEEE (2010)

    Google Scholar 

  4. Bender, M.A., Kopelowitz, T., Pettie, S., Young, M.: Contention resolution with log-logstar channel accesses. In: Proceedings of the 48th Annual ACM Symposium on Theory of Computing, pp. 499–508. ACM (2016)

    Google Scholar 

  5. Capetanakis, J.I.: Tree algorithms for packet broadcast channels. IEEE Trans. Inf. Theor. 25(5), 505–515 (1979)

    Article  MathSciNet  Google Scholar 

  6. Chang, Y.J., Kopelowitz, T., Pettie, S., Wang, R., Zhan, W.: Exponential separations in the energy complexity of leader election. In: Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, pp. 771–783. ACM (2017)

    Google Scholar 

  7. Chlamtac, I., Kutten, S.: On broadcasting in radio networks-problem analysis and protocol design. IEEE Trans. Commun. 33(12), 1240–1246 (1985)

    Article  Google Scholar 

  8. Cornejo, A., Kuhn, F.: Deploying wireless networks with beeps. In: Lynch, N.A., Shvartsman, A.A. (eds.) DISC 2010. LNCS, vol. 6343, pp. 148–162. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15763-9_15

    Chapter  Google Scholar 

  9. Devroye, L.: Non-Uniform Random Variate Generation. Devroye’s web page (2003). http://www.nrbook.com/devroye/

  10. Fraigniaud, P., Korman, A., Peleg, D.: Towards a complexity theory for local distributed computing. J. ACM (JACM) 60(5), 35 (2013)

    Article  MathSciNet  Google Scholar 

  11. Ghaffari, M., Haeupler, B.: Near optimal leader election in multi-hop radio networks. In: Proceedings of the 24th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 748–766 (2013)

    Google Scholar 

  12. Ghaffari, M., Lynch, N., Sastry, S.: Leader election using loneliness detection. Distrib. Comput. 25(6), 427–450 (2012)

    Article  Google Scholar 

  13. Greenberg, A.G., Winograd, S.: A lower bound on the time needed in the worst case to resolve conflicts deterministically in multiple access channels. J. ACM 32(3), 589–596 (1985)

    Article  MathSciNet  Google Scholar 

  14. Guo, C., Zhong, L.C., Rabaey, J.M.: Low power distributed mac for ad hoc sensor radio networks. In: Proceedings of the IEEE Global Telecommunications Conference, GLOBECOM 2001. vol. 5, pp. 2944–2948. IEEE (2001)

    Google Scholar 

  15. He, Y., Du, P., Li, K., Yong, S.: An optimization algorithm based on the Monte Carlo node localization of mobile sensor network. Int. J. Simul. Syst. Sci. Technol. 17, 20 (2016)

    Google Scholar 

  16. Jurdziński, T., Kutyłowski, M., Zatopiański, J.: Weak communication in single-hop radio networks: adjusting algorithms to industrial standards. Concurr. Comput. Pract. Exper. 15(11–12), 1117–1131 (2003)

    Article  Google Scholar 

  17. Kardas, M., Klonowski, M., Pajak, D.: Energy-efficient leader election protocols for single-hop radio networks. In: Proceedings of the 42nd International Conference on Parallel Processing, ICPP, pp. 399–408. IEEE (2013)

    Google Scholar 

  18. Liu, F., Narayanan, A., Bai, Q.: Real-time systems (2000)

    Google Scholar 

  19. Metcalfe, R.M., Boggs, D.R.: Ethernet: distributed packet switching for local computer networks. Commun. ACM 19(7), 395–404 (1976)

    Article  Google Scholar 

  20. Nakano, K., Olariu, S.: Randomized leader election protocols in radio networks with no collision detection. In: Goos, G., Hartmanis, J., van Leeuwen, J., Lee, D.T., Teng, S.-H. (eds.) ISAAC 2000. LNCS, vol. 1969, pp. 362–373. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-40996-3_31

    Chapter  Google Scholar 

  21. Nakano, K., Olariu, S.: Uniform leader election protocols for radio networks. IEEE Trans. Parallel Distrib. Syst. 13(5), 516–526 (2002)

    Article  Google Scholar 

  22. Oh, H., Han, T.D.: A demand-based slot assignment algorithm for energy-aware reliable data transmission in wireless sensor networks. Wire. Netw. 18(5), 523–534 (2012)

    Article  Google Scholar 

  23. Sivalingam, K.M., Srivastava, M.B., Agrawal, P.: Low power link and access protocols for wireless multimedia networks. In: Proceedings of the IEEE 47th Vehicular Technology Conference. Technology in Motion, vol. 3, pp. 1331–1335. IEEE (1997)

    Google Scholar 

  24. Tsybakov, B.S.: Free synchronous packet access in a broadcast channel with feedback. Problem. Inform. Trans. 14(4), 259–280 (1978)

    MathSciNet  Google Scholar 

  25. Vieira, M.A.M., Coelho, C.N., Da Silva, D., da Mata, J.M.: Survey on wireless sensor network devices. In: Proceedings of the 2003 IEEE Conference on Emerging Technologies and Factory Automation, vol. 1 (2003)

    Google Scholar 

  26. Willard, D.: Log-logarithmic selection resolution protocols in a multiple access channel. SIAM J. Comput. 15(2), 468–477 (1986)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ny Aina Andriambolamalala or Vlady Ravelomanana .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Andriambolamalala, N.A., Ravelomanana, V. (2020). Transmitting once to Elect a Leader on Wireless Networks. In: Kohayakawa, Y., Miyazawa, F.K. (eds) LATIN 2020: Theoretical Informatics. LATIN 2021. Lecture Notes in Computer Science(), vol 12118. Springer, Cham. https://doi.org/10.1007/978-3-030-61792-9_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-61792-9_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-61791-2

  • Online ISBN: 978-3-030-61792-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics