
ar
X

iv
:1

91
2.

03
08

8v
2

 [
cs

.D
S]

 9
 F

eb
 2

02
0

Scheduling on Hybrid Platforms: Improved

Approximability Window

Vincent Fagnon1,2, Imed Kacem2, Giorgio Lucarelli2

and Bertrand Simon3

Abstract

Modern platforms are using accelerators in conjunction with standard
processing units in order to reduce the running time of specific operations,
such as matrix operations, and improve their performance. Scheduling on
such hybrid platforms is a challenging problem since the algorithms used
for the case of homogeneous resources do not adapt well. In this paper
we consider the problem of scheduling a set of tasks subject to precedence
constraints on hybrid platforms, composed of two types of processing units.
We propose a (3 + 2

√
2)-approximation algorithm and a conditional lower

bound of 3 on the approximation ratio. These results improve upon the
6-approximation algorithm proposed by Kedad-Sidhoum et al. as well
as the lower bound of 2 due to Svensson for identical machines. Our
algorithm is inspired by the former one and distinguishes the allocation
and the scheduling phases. However, we propose a different allocation
procedure which, although is less efficient for the allocation sub-problem,
leads to an improved approximation ratio for the whole scheduling problem.
This approximation ratio actually decreases when the number of processing
units of each type is close and matches the conditional lower bound when
they are equal.

Keywords— approximation algorithms scheduling precedence constrains
CPU/GPU

1 Univ. Grenoble Alpes, CNRS, Inria, Grenoble INP, LIG, 38000 Grenoble, France
vincent.fagnon@univ-grenoble-alpes.fr

2 LCOMS, University of Lorraine, Metz, France
{first name.last name}@univ-lorraine.fr

3 Universitt Bremen, Bremen, Germany
bsimon@uni-bremen.de

1

http://arxiv.org/abs/1912.03088v2

Scheduling on Hybrid Platforms: Improved Approximability Window

1 Introduction

Nowadays, more and more High Performance Computing platforms use special
purpose processors in conjunction with classical Central Processing Units (CPUs)
in order to accelerate specific operations and improve their performance. A typ-
ical example is the use of modern Graphics Processing Units (GPUs) which can
accelerate vector and matrix operations.

Due to the heterogeneity that introduce this kind of accelerators, the schedul-
ing problem on such hybrid platforms becomes more challenging. Several exper-
imental results as well as theoretical lower bounds [1] show that the decision of
the allocation of a task to the type of processors is crucial for the performance of
the system. Specifically, classical greedy policies, such as Graham’s List Schedul-
ing [9], which perform well in the case of identical computing resources, fail to
generalize on hybrid platforms. For this reason, all known algorithms for hybrid
platforms [1, 5, 7, 10] choose the type of the resource for each task before deciding
its scheduling in the time horizon.

In this paper, we focus on the problem of scheduling an application on such
an hybrid platform consisting of m identical CPUs and k identical GPUs. An
application is described as a set of n mono-processor tasks V which are linked
through precedence dependencies described by a directed acyclic graph G =
(V,E). This means that a task can start being executed only after all of its
predecessors are completed. The processing time of task j on a CPU (resp. on a
GPU) is denoted by pj (resp. by pj), and we do not assume any relation between
pj and pj. This is justified in real systems where tasks performing for instance
matrix operations can be executed much more efficiently on a GPU, while the
execution of tasks which need to communicate often with the file system is faster
on a CPU. Therefore, we can assume without loss of generality than m ≥ k.

We are interested in designing polynomial-time algorithms with good perfor-
mance guarantees in the worst case. As performance measure we use the well-
known approximation ratio which compares the solution of an algorithm and the
optimal solution with respect to an objective function. In this paper, we study
the makespan objective, that is we aim at minimizing the completion time of
the last task. Extending the Graham notation, we will denote this problem as
(Pm,Pk) | prec | Cmax.

For this problem, a 6-approximation algorithm named HLP (Heterogeneous
Linear Program) has been proposed by Kedad-Sidhoum et al. [10]. This algo-
rithm has two phases. In the first phase a “good” allocation of each task either
on the CPU or on the GPU side is decided. This decision is based on an integer
linear program which uses a 0-1 decision variable xj for each task j: xj will be
equal to one if j is assigned to the CPU side, and to zero otherwise. This inte-
ger linear program does not model the whole scheduling problem but only the
allocation decision, trying to balance the average load on the CPUs and GPUs
as well as the critical path length. The fractional relaxation of this program is

2

Scheduling on Hybrid Platforms: Improved Approximability Window

solved and the allocation of each task j is determined by a simple rounding rule:
it is assigned to GPUs if xj < 1/2, and to CPUs otherwise. In the second phase,
the greedy List Scheduling algorithm is used to schedule the tasks respecting the
precedence constraints and the allocation defined in the first phase.

The authors in [10] prove that the value of 1/2 chosen is best possible with
respect to the linear program used in the first phase. In a sense, they prove that
the integrality gap of the linear program relaxation is 2. Furthermore, given this
simple rounding rule based on 1/2, Amaris et al. [1] present a tight example of
HLP which asymptotically attains an approximation ratio of 6, even if another
scheduling algorithm is used in the second phase. Despite both previous negative
results, we show that HLP can achieve a better approximation ratio by using a
different rounding procedure. Indeed, even though we use a rounding which is
not the best possible with respect to the allocation problem solved in the first
phase, this rounding allows us to obtain stronger guarantees on the scheduling
phase and therefore improve the approximation ratio. The main difference with
HLP is that we allocate task j to the fastest processor type if xj is close to 1/2
in the fractional relaxation solution. We then achieve an approximation ratio
smaller than 3 + 2

√
2 and that tends towards 3 when m/k is close to 1.

The best known lower bound on the approximation ratio is the same as for
identical machines, i.e., 4/3 [12], but can be improved to 2 by assuming a variant
of the unique games conjecture [14]. Our second contribution is to improve this
conditional lower bound to 3 for any value of m/k assuming a stronger conjec-
ture introduced by Bazzi and Norouzi-Fard [3]. This conditional lower bound is
therefore tight when m = k.

Organization of the paper

In Section 2 we give a literature review by positioning our problem with respect
to closely related ones and by presenting several known approximability results.
In Section 3 we present our adapted algorithm for the problem of scheduling on
hybrid platforms as well as its analysis which leads to an approximation ratio of
5.83. In Section 4, we prove a conditional lower bound of 3 on the approximation
ratio. Finally, we conclude in Section 5.

2 Related Work

The problem of scheduling on hybrid platforms consisting of two sets of identical
processors is a generalization of the classical problem of scheduling on parallel
identical processors, denoted by P | prec | Cmax. On the other hand, our problem
is a special case of the problem of scheduling on unrelated processors (denoted
by R | prec | Cmax), where each task has a different processing time on each
processor. Moreover, in the case of scheduling on related processors (denoted

3

Scheduling on Hybrid Platforms: Improved Approximability Window

by Q | prec | Cmax), each processor has its specific speed and the processing
time of each task depends on the speed of the assigned processor. This problem
is more general than P | prec | Cmax in the sense that the processing time
of a task is different on each processor. However, in the former problem all
tasks are accelerated or decelerated by the same factor when using a specific
processor, while in our case two tasks does not necessarily have the same behavior
(acceleration or deceleration) if they are scheduled on a CPU or a GPU.

For P | prec | Cmax, the greedy List Scheduling algorithm proposed by Gra-
ham [9] achieves an approximation ratio of (2 − 1

m
), where m is the number of

the processors. Svensson [14] proved that this is the best possible approximation
result that we can expect, assuming P 6= NP and a variant of the unique games
conjecture introduced by Bansal and Khot [2]. Note that this negative result
holds also for our more general problem. For Q | prec | Cmax, a series of algo-
rithms with logarithmic approximation ratios are known (see for example [6, 8]),
while Li [13] has recently proposed a O(log(m)/ log(log(m)))-approximation al-
gorithm which is the current best known ratio. On the negative side, Bazzi and
Norouzi-Fard [3] show that it is not possible to have a constant approximation
ratio assuming the NP-hardness of some problems on k-partite graphs. No result
is actually known for R | prec | Cmax. However, there are few approximation
algorithms for special classes of precedence graphs (see for example [11]).

For the problem (Pm,Pk) | prec | Cmax, targeting hybrid platforms, Kedad-
Sidhoum et al. [10] presented a 6-approximation algorithm as we reported before
by separating the allocation and the scheduling phases. Amaris et al. [1] proposed
small improvements on both phases, without improving upon the approximation
ratio. However, they show that using the rounding proposed in [10], any schedul-
ing policy cannot lead to an approximation ratio strictly smaller than 6. In the
absence of precedence constraints, a polynomial time approximation scheme has
been proposed by Bleuse et al. [4].

The problem of scheduling on hybrid platforms has been also studied in the
online case. If the tasks are not subject to precedence relations, then a 3.85-
competitive algorithm has been proposed in [7], while the authors show also that
no online algorithm can have a competitive ratio strictly less than 2. In the
presence of precedence constraints, Amaris et al. [1] consider that tasks arrive
in an online order respecting the precedence relations and they give a (4

√

m/k)-
competitive algorithm. This result has been improved by Canon et al. [5] who
provide a (2

√

m/k + 1)-competitive algorithm, while they show that no online

algorithm can have a competitive ratio smaller than
√

m/k.

3 A 5.83-approximation Algorithm

In this section we present the improved approximation algorithm and its analysis
for the problem (Pm,Pk) | prec | Cmax. Although several ingredients of our

4

Scheduling on Hybrid Platforms: Improved Approximability Window

algorithm have been already presented in [10], we present here all the steps of
the algorithm for the sake of completeness.

3.1 The Algorithm HLP-b

As explained in introduction, the algorithmHLP-b has two phases: the allocation
phase and the scheduling one. The allocation phase is based on an integer linear
program. For each task j ∈ V , let xj be a decision variable which is equal to
1 if task j is assigned to the CPU side, and to 0 otherwise. Moreover, let Cj

be a variable corresponding to the completion time of task j. Finally, let Cmax

be a variable that indicates the maximum completion time over all tasks. For
the sake of simplicity, we add in G a fictive task 0 with p0 = p0 = 0 which
precedes all other tasks. Consider the following integer linear program similarly
to Kedad-Sidhoum et al. [10].

Minimize Cmax

1

m

∑

j∈V

pjxj ≤ Cmax (1)

1

k

∑

j∈V

pj(1− xj) ≤ Cmax (2)

Ci + pjxj + pj(1− xj) ≤ Cj ∀(i, j) ∈ E (3)

0 ≤ Cj ≤ Cmax ∀j ∈ V (4)

xj ∈ {0, 1} ∀j ∈ V (5)

Constraints (1) and (2) imply that the makespan of any schedule cannot be
smaller than the average load on the CPU and GPU sides, respectively. Con-
straints (3) and (4) build up the critical path of the precedence graph, i.e., the
path of G with the longest total completion time. In any schedule, the critical
path length is a lower bound of the makespan. Note that the critical path of the
input instance cannot be defined before the allocation decision for all tasks since
the exact processing time of a task depends on this allocation. Constraint 5 is
the integrality constraint for the decision variable xj . In what follows, we relax
the integrality constraint and we replace it by xj ∈ [0, 1] for each task j in V , in
order to get a linear program which we can solve in polynomial time. The above
integer linear program is not completely equivalent to our scheduling problem,
but the objective value of its optimal solution is a lower bound of any optimal
schedule.

The rounding procedure of HLP-b is based on a parameter b ≥ 2. We will

show in Section 3.2 that the best choice is b = 1+
√

2−k/m
1−k/m

. Let xR
j be the value of

the decision variable for task j in an optimal solution of the above linear program

5

Scheduling on Hybrid Platforms: Improved Approximability Window

relaxation. We define xA
j to be the value of the decision variable for task j in our

algorithm’s schedule, that is the value of the decision variable obtained by the
rounding procedure. The allocation phase of our algorithm rounds the optimal
relaxed solution {xR

j } to the feasible solution {xA
j } as follows:

• if xR
j ≥ 1− 1

b
, then xA

j = 1;

• if xR
j ≤ 1

b
, then xA

j = 0;

• if 1
b
< xR

j < 1− 1
b
and pj ≥ pj , then xA

j = 0;

• if 1
b
< xR

j < 1− 1
b
and pj < pj, then xA

j = 1.

Intuitively, if the linear program solution is close to an integer (xj ≤ 1
b
or xj ≥

1 − 1
b
) then we follow its proposal, else we choose the processor type with the

smallest processing time: the task is allocated to a CPU (i.e., xA
j = 1), if pj < pj

and to a GPU otherwise.
Given the allocation obtained by the previous procedure, HLP-b proceeds to

the scheduling phase. The classical List Scheduling algorithm is applied respect-
ing the allocation {xA

j } and the precedence constraints: tasks are allocated to
the earliest available processor of the correct type in a topological order.

3.2 Analysis of the Algorithm HLP-b

We begin the analysis of HLP-b with some lemmas that are based on the rounding
procedure.

Lemma 1. For each task j ∈ V we have (1− xA
j)pj ≤ b · (1− xR

j)pj.

Proof. Consider any task j ∈ V . Note first that if j is assigned to the CPU
side by the algorithm then xA

j = 1 and the lemma directly holds since xR
j ≤ 1.

Then, we assume that j is assigned to the GPU side, that is xA
j = 0. Hence,

xR
j ≤ (1− 1

b
).Therefore, we conclude as b · (1− xR

j)pj ≥ pj = (1− xA
j)pj.

Lemma 2. For each task j ∈ V we have:

xA
j pj + (1− xA

j)pj ≤
b

b− 1
(xR

j pj + (1− xR
j)pj).

Proof. Consider any task j ∈ V . We have the following three cases.

• If xR
j ≤ 1

b
, then xA

j = 0 and we have:

(1− xR
j)pj ≥ (1− 1

b
)(1− xA

j)pj

(1− xR
j)pj + xR

j pj ≥ (1− 1

b
)
(

(1− xA
j)pj + xA

j pj

)

.

6

Scheduling on Hybrid Platforms: Improved Approximability Window

• If xR
j ≥

(

1− 1
b

)

, then xA
j = 1 and we have:

xR
j pj ≥ (1− 1

b
)xA

j pj

(1− xR
j)pj + xR

j pj ≥ (1− 1

b
)
(

(1− xA
j)pj + xA

j pj

)

.

• If 1
b
< xR

j < (1− 1
b
), then we have:

xR
j pj + (1− xR

j)pj ≥ min(pj, pj) = xA
j pj + (1− xA

j)pj.

Therefore, combining the three cases, we obtain the lemma as b/(b− 1) ≥ 1.

Based on the three previous lemmas, the following theorem gives the approx-
imation ratio of our algorithm HLP-b.

Theorem 1. HLP-b achieves an approximation ratio of 3 + 4
√

1−k/m
2−k/m

, which is

upper bounded by 3 + 2
√
2 ≤ 5.83.

Proof. We first define some additional notations. In the algorithm’s schedule, let
WA

CPU (resp. WA
GPU) be the total load over all CPUs (resp. GPUs), and let CPA

be the value of the critical path length of G after the allocation phase of HLP-b.
Denoting by P the set of paths in G, these values equal:

WA
CPU =

∑

j∈V

pjx
A
j ; WA

GPU =
∑

j∈V

pj(1− xA
j);

CPA = max
p∈P

{

∑

j∈p

(pjx
A
j + pj(1− xA

j))
}

.

In a similar way, we define WR
CPU , W

R
GPU and CPR as the total load on CPUs,

the total load on GPUs and the critical path in an optimal solution of the linear
program relaxation. Furthermore, let CA

max, C
R
max and C∗

max be respectively the
makespan of the schedule created by HLP-b, the objective value in an optimal
solution of the linear program relaxation and the makespan of an optimal solution
for our problem. Following the same arguments as in [1, 10], as HLP-b is a List
Scheduling algorithm, we have:

CA
max ≤ WA

CPU

m
+

WA
GPU

k
+ CPA

=
WA

CPU +WA
GPU

m
+

m− k

mk
WA

GPU + CPA

=
1

m

∑

j∈V

(

xA
j pj + (1− xA

j)pj

)

+
m− k

mk

∑

j∈V

(1− xA
j)pj

+max
p∈P

{

∑

j∈p

(

xA
j pj + (1− xA

j)pj

)}

7

Scheduling on Hybrid Platforms: Improved Approximability Window

Using Lemmas 1 and 2, we obtain:

CA
max ≤ b

b− 1

1

m

∑

j∈V

(

xR
j pj + (1− xR

j)pj

)

+ b
m− k

mk

∑

j∈V

(1− xR
j)pj

+
b

b− 1
max
p∈P

{

∑

j∈p

(

xR
j pj + (1− xR

j)pj

)}

=
b

b− 1

WR
CPU +WR

GPU

m
+ b

m− k

mk
WR

GPU +
b

b− 1
CPR

Now, the constraints (1) to (4) of the linear program relaxation give us:

CA
max ≤ b

b− 1

mCR
max + kCR

max

m
+ b

m− k

mk
kCR

max +
b

b− 1
CR

max.

Since CR
max ≤ C∗

max we get:

CA
max

C∗
max

≤ b

b− 1
· m+ k

m
+ b · m− k

m
+

b

b− 1
= b+ 2 · b

b− 1
− m

k
(b− b

b− 1
).

This function reaches its minimum for b = 1 +
√

2−k/m
1−k/m

> 1 +
√
2, which gives:

CA
max

C∗
max

≤ 3 + 4

√

1− k/m

2− k/m
≤ 3 + 2

√
2 ≈ 5.83.

4 Conditional lower bound on the approxima-

tion factor

In this section, we extend the results of Bazzi and Norouzi-Fard [3] in our setting.
Assuming Hypothesis 1 (see below), they show that it is NP-hard to approximate
Q | prec | Cmax within a constant factor. If we focus on only two types of proces-
sors, their result implies a lower bound of 2 on the approximation ratio, therefore
not improving on Svensson’s result [14]. We improve their result to obtain a
conditional lower bound of 3 stated in Theorem 2, which therefore also holds in
our more restricted setting (Pm,Pk) | prec | Cmax in which the processing times
on both processor types can be arbitrary. Due to lack of space, we do not discuss
further the relevance of Hypothesis 1 or its link to the weaker Unique Games
Conjecture and refer the reader to [3] for more details.

Theorem 2. Assuming Hypothesis 1 and P 6= NP , there exist no polynomial-
time (3 − α)-approximation, for any α > 0, for the problem (Pm,Pk) | prec |
Cmax, even if the processors are related.

8

Scheduling on Hybrid Platforms: Improved Approximability Window

Hypothesis 1 (q-partite problem). For every small ε, δ > 0, and every constant
integers q, Q > 1, the following problem is NP-hard: given a q-partite graph
Gq = (V1, . . . , Vq, E1, . . . , Eq−1) with |Vi| = n for all 1 ≤ i ≤ q and Ei being the
set of edges between Vi and Vi+1 for all 1 ≤ i < q, distinguish between the two
following cases:

• YES Case: every Vi can be partitioned into Vi,0, . . . Vi,Q−1, such that:
– there is no edge between Vi,j1 and Vi+1,j2 for all 1 ≤ i < q, j1 > j2.
– |Vi,j| ≥ 1−ε

Q
n, for all 1 ≤ i ≤ q, 0 ≤ j ≤ Q− 1.

• NO Case: for every 1 ≤ i < q and every two sets S ⊆ Vi, T ⊆ Vi+1 such
that |S| = |T | = ⌊δn⌋, there is an edge between S and T .

We start by fixing several values: an integer q multiple of 3, an integer Q,
δ ≤ 1/(2Q) and ε ≤ 1/Q2. We consider the q-partite problem parameterized by
Q, ε, δ, which is assumed to be NP-hard under Hypothesis 1.

Reduction. We define a reduction from Gq = (V1, . . . , Vq, E1, . . . , Eq−1), a q-
partite graph where for each i, |Vi| = n > Q, to a scheduling instance I. The
instance consists of m = ⌈(1 +Qε)n4⌉ CPUs and k = ⌈(1 +Qε)n2⌉ GPUs and
uses two types of tasks: CPU tasks verifying pj = npj = 1, and GPU tasks

verifying pj = npj = n. The tasks and edges (i.e., precedence constraints) are

defined as follows. For each 0 ≤ z < q/3, and for each:
• vertex v ∈ V3z+1, create a set J3z+1,v of Qn−Q GPU tasks (type a).
• vertex v ∈ V3z+2, create a set J3z+2,v of Qn3 CPU tasks (type b).
• vertex v ∈ V3z+3, create a set J3z+3,v of Q− 2 GPU tasks (type c) indexed

J1
3z+3,v, . . . J

Q−2
3z+3,v, and an edge from J ℓ

3z+3,v to J ℓ+1
3z+3,v for ℓ from 1 to Q− 3.

• edge (v, w) ∈ Ei, create all edges from the set Ji,v to the set Ji+1,w.
Intuitively, the tasks corresponding to each set Vi of Gq can be computed in

Q time slots. To achieve this, each set of type b requires almost all the CPUs,
each set of type a requires almost all but n GPUs, and each set of type c requires
n GPUs. On a YES instance, it is possible to progress simultaneously on the
tasks corresponding to three consecutive sets Vi, by pipe-lining the execution,
thus obtaining a makespan close to qQ/3. For example, it is possible to execute
Vi,1 at some time step, and then to execute Vi+1,1 and Vi,2 in parallel. On a
NO instance, the tasks corresponding to each Vi have to be scheduled almost
independently, thus not efficiently using the processing power: there are too few
GPUs to process a significant amount of CPU tasks, and CPUs are too slow to
process GPU tasks. The minimum possible makespan is then close to qQ. The
two following lemmas state these results formally.

Lemma 3 (Completeness). If Gq corresponds to the YES case of the q-partite
problem, then instance I admits a schedule of makespan (q + 3)Q/3.

Proof. Suppose that Gq corresponds to a YES instance of the q-partite problem,
and let Vi,j for 1 ≤ i ≤ q and j < Q be the associated partition of the sets Vi.

9

Scheduling on Hybrid Platforms: Improved Approximability Window

CPU GPU
m k(1− 1/n) k/(nQ) k/(nQ) k/(nQ) . . . k/(nQ) k/(nQ) k/(nQ)

[0, 1) S1,0

[1, 2) S2,0 S1,1

[2, 3) S2,1 S1,2 S3,0

[3, 4) S2,2 S1,3 S4,0 S3,1

[4, 5) S2,3 S1,4 S5,0 S4,1 S3,2

.
[Q− 1, Q) S2,Q−2 S1,Q−1 SQ,0 SQ−1,1 SQ−2,2 . . . S3,Q−3

[Q,Q+ 1) S2,Q−1 SQ+1,0 SQ,1 SQ−1,2 . . . S4,Q−3 S3,Q−2

[Q + 1, Q+ 2) SQ+2,0 SQ+1,1 SQ,2 . . . S5,Q−3 S4,Q−2 S3,Q−1

[Q + 2, Q+ 3) SQ+2,1 SQ+1,2 . . . S6,Q−3 S5,Q−2 S4,Q−1

[Q + 3, Q+ 4) SQ+2,2 SQ+1,3 SQ+3,0 . . . S7,Q−3 S6,Q−2 S5,Q−1

[Q + 4, Q+ 5) SQ+2,3 SQ+1,4 SQ+4,0 SQ+3,1 . . . S8,Q−3 S7,Q−2 S6,Q−1

. . .

Table 1: A sketch of the beginning of the schedule for the tasks in I.

Note that the size of any set Vi,j of the partition is at most (1 + Qε)n/Q, since
∑Q−1

j=0 |Vi,j| = |Vi| = n and, by definition, in a YES instance it holds that |Vi,j| ≥
1−ε
Q
n. We next partition the tasks of I into sets Si,j. For each z, 0 ≤ z < q/3,

and j, 0 ≤ j ≤ Q− 1, we define:
• type A: SzQ+1,j =

⋃

v∈V3z+1,j
J3z+1,v, and thus

|SzQ+1,j| ≤ (Qn−Q)(1 +Qε)n/Q ≤ k(1− 1/n).
• type B: SzQ+2,j =

⋃

v∈V3z+2,j
J3z+2,v, and thus

|SzQ+2,j| ≤ Qn3(1 +Qε)n/Q ≤ (1 +Qε)n4 ≤ m.
• type C: for 1 ≤ ℓ ≤ Q− 2, SzQ+2+ℓ,j =

⋃

v∈V3z+3,j
{J ℓ

3z+3,v}, and thus

|SzQ+2+ℓ,j| = (1 +Qε)n/Q ≤ k/(nQ).
Let Tt be the union of all Si,j with t = i+ j, 1 ≤ i ≤ Qq/3 and 0 ≤ j ≤ Q−1.

We create a schedule for instance I as follows: at the time slot [t − 1, t), we
schedule the tasks of set Tt. A sketch of the beginning of this schedule is given in
Table 1. The type and the number of machines (CPUs or GPUs) for executing
each set of tasks Si,j is also given in this table. Note that the tasks of the second
triplet 〈V4, V5, V6〉 start executing from time slot [Q,Q + 1): specifically, SQ+1,0

contains tasks in V4. Moreover, the execution of some tasks of the first triplet
〈V1, V2, V3〉 takes place after time Q+ 1: specifically, the last tasks in this triplet
belong to the set SQ,Q−1 and they are executed in the time slot [2Q− 2, 2Q− 1).
However, there is no a time slot in which 3 triplets are involved.

In the last time slot of the created schedule we execute the tasks in Tt with t =
i+j, i = Qq/3 and j = Q−1. Hence, the makespan is Qq/3+Q−1 < Qq/3+Q. It
remains to prove the feasibility of the created schedule: the precedence constraints
are satisfied and there are enough machines to perform the assigned tasks at each
time slot.

Consider first the precedence constraints inside each set J3z+3,v, 0 ≤ z < q/3
and v ∈ V3z+3, that is the arc from the task J ℓ

3z+3,v to the task J ℓ+1
3z+3,v, for all ℓ,

10

Scheduling on Hybrid Platforms: Improved Approximability Window

1 ≤ ℓ ≤ Q − 3. By construction, J ℓ
3z+3,v ∈ SzQ+2+ℓ,j and J ℓ+1

3z+3,v ∈ SzQ+2+ℓ+1,j.

Thus, J ℓ
3z+3,v is executed in the time slot zQ + 2 + ℓ + j, while J ℓ+1

3z+3,v in the
time slot zQ+ 2+ ℓ+ 1+ j > zQ+ 2+ ℓ+ j, and hence this kind of precedence
constraints are satisfied.

Consider now the precedence constraint from a task J ∈ Ji,v corresponding
to v ∈ Vi,j1 ⊂ Vi to a task J ′ ∈ Ji+1,w corresponding to w ∈ Vi+1,j2 ⊂ Vi+1. By
construction and due to the fact that Gq is a YES instance, an arc from J to J ′

exists only if j1 ≤ j2. Assume that J belongs to the set Si1,j1, while J ′ belongs
to the set Si2,j2. By the definition of the sets Si,j, we have that i1 < i2. Thus,
i1 + j1 < i2 + j2 which means that J is executed in a time slot before J ′, and
hence this kind of precedence constraints are also satisfied.

It remains to show that each set Tt is composed of at most m CPU tasks and
k GPU tasks, so can be computed in a single time slot. In a given set Tt, there
can be at most one set of type A, one set of type B and Q − 2 sets of type C.
As explained in the definition of the sets Si,j , each set of type B is composed
of at most m CPU tasks. Moreover, each set of type A is composed of at most
k(1− 1/n) GPU tasks, while each of the Q− 2 sets of type C is composed of at
most k/nQ GPU tasks. In total, there are k(1 − 1/n) + (Q− 2)k/nQ < k GPU
tasks, and the lemma follows.

Lemma 4 (Soundness). If Gq corresponds to the NO case of the q-partite prob-
lem, then all schedules of instance I have a makespan at least f(Q)qQ, where f
tends towards 1 when Q grows.

Proof. Suppose that Gq corresponds to a NO instance of the q-partite problem,
and consider the following partition of the tasks of the associated instance I, for
all 0 ≤ z < q/3:

• type A: SQz+1 :=
⋃

v∈V3z+1
J3z+1,v, so |SQz+1| = Qn2 −Qn = n(n− 1)Q.

• type B: SQz+2 :=
⋃

v∈V3z+2
J3z+2,v, so |SQz+1| = Qn4.

• type C: SQz+2+ℓ :=
⋃

v∈V3z+3
{J ℓ

3z+3,v}, for 1 ≤ ℓ ≤ Q− 2, so |SQz+2+ℓ| = n.

Consider a schedule of I minimizing the makespan, and discard a fraction 2δ
of each set Si in the partition where (i mod Q) ∈ {0, 1, 2, 3}: the first ⌈δ|Si|⌉
tasks to be executed Ss

i and the last ⌈δ|Si|⌉ tasks to be executed Sf
i . Let R be

the pseudo-schedule obtained.
Suppose that there exists i such that one task of Si+1 is started before all

tasks of Si are completed, and at least one set among Si, Si+1 is of type A or B
(i.e., (i mod Q) ∈ {0, 1, 2}). Then, this means that there is no edge between Sf

i

and Ss
i+1. Let i

′ be such that the set Si corresponds to vertices of Vi′ , and let V f
i′

be the set of vertices v ∈ Vi′ that verify Ji′,v ∪ Sf
i 6= ∅. Define V s

i′+1 analogously.

By the definition of the sets J , there is no edge between V f
i′ and V s

i′+1. As all

11

Scheduling on Hybrid Platforms: Improved Approximability Window

Ji′,v have the same size, we have |V f
i′ | ≥ |Vi′| · |Sf

i |/|Si| ≥ ⌊δn⌋, and, similarly,
|V s

i′+1| ≥ ⌊δn⌋. This contradicts the hypothesis that Gq is a NO instance of the
q-partite problem. Therefore, in the pseudo-schedule R, a task of a set Si of type
A or B cannot be executed concurrently with a task from the sets Si−1 or Si+1.

Hence, for any z, the set SQz+1 of type A has to be completed before the start
of the set SQz+2 of type B, which itself has to be completed before the start of
the set SQz+3 of type C. If z < q/3 − 1, the set SQ(z+1) of type C has to be in
turn completed before the start of the set SQ(z+1)+1 of type A.

Fix z and consider the Q − 2 sets of type C associated to V3z. Among the
n(Q−2) tasks of these sets, at most 2(2δn+2) < n = |V3z| have been discarded, so
there exists one vertex v ∈ V3z for which none of the tasks J ℓ

3z,v, for 1 ≤ ℓ ≤ Q−2
has been discarded. Because these tasks form a chain and each task needs a time
1 to be completed, the pseudo-schedule R needs at least a time MC = Q − 2 to
schedule all the sets of type C associated to V3z.

In the pseudo-schedule R, if all tasks of a set SQz+1 of type A are executed on
GPUs, this takes a time at least (recall that n > Q, ε ≤ 1/Q2 and δ ≤ 1/(2Q)):

MA =
|SQz+1| − |Ss

Qz+1| − |Sf
Qz+1|

k

≥ (1− 2δ)n(n− 1)Q− 2

(1 +Qε)n2 + 1

≥
(1− 1

Q
)(1− 1

n
)− 2

Qn2

(1 + 1
Q
) + 1

n2

Q

≥ Q− 2

Q+ 2
Q.

If a task of a set A is executed on a CPU, this takes a time n > Q ≥ MA.
A set SQz+2 of type B has to be scheduled on all CPUs and GPUs in time at

least:

MB =
|SQz+2| − |Ss

Qz+2| − |Sf
Qz+2|

m+ n · k
≥ (1− 2δ)Qn4 − 2

(1 +Qε)n4 + 1 + n((1 +Qε)n2 + 1)

≥
1− 1

Q
− 2

Qn4

1 + 1
Q
+ 1

n4 +
1
n
+ 1

nQ
+ 1

n3

Q

≥ Q− 2

Q+ 3
Q.

Therefore, the makespan of R is at least:

q

3
(MA +MB +MC) ≥

qQ

3

(

Q− 2

Q+ 2
+

Q− 2

Q+ 3
+

Q− 2

Q

)

.

12

Scheduling on Hybrid Platforms: Improved Approximability Window

As the expression in parentheses tends towards 3 when Q grows, and the
makespan ofR is not larger than the minimum makespan to schedule the instance
I, the lemma holds.

We are now ready to complete the proof.

Proof (Proof of Theorem 2). Let α > 0 and choose q and Q such that f(Q)qQ >
(3−α)(q+3)Q/3. Consider an instance Gq of the corresponding q-partite problem,
with n > Q. Because of Lemmas 3 and 4, if Gq is a YES instance, then its
optimal makespan is at most (q + 3)Q/3, and otherwise, its makespan is at least
f(Q)qQ > (3− α)(q + 3)Q/3.

Therefore, an algorithm approximating the scheduling problem within a factor
3 − α also solves the q-partite problem in polynomial time, which contradicts
Hypothesis 1 and P 6= NP .

We can furthermore adapt this proof to show the following result:

Corollary 2.1. Assuming Hypothesis 1 and P 6= NP , the problem (Pm,Pk) |
prec | Cmax has no 3− α-approximation, for any α > 0 and any value of m/k.

Proof (Proof sketch). Define CPU tasks as pj = 1 and pj = ∞, and GPU tasks
as pj = ∞ and pj = 1. The value of k is the same as before, but we now consider

any value of m ≥ k, and we define the sets of type b as containing nb = ⌊Qmn/k⌋
tasks instead of Qn3. The completeness lemma is still valid as (1+Qε)n ·nb ≤ m
and the soundness lemma holds as tasks cannot be processed on the other resource
type.

This result is interesting as the competitive ratio of the algorithms known

for (Pm,Pk) | prec | Cmax both in the offline (3 + 4
√

1−k/m
2−k/m

) and in the online

(1+2
√

m/k [5]) setting tend towards 3 when m/k is close to 1, so there is no gap
between the conditional lower bound and the upper bound for this case. Note
that this hardness result also holds if an oracle provides the allocation (CPU or
GPU for each task), in which case List Scheduling is 3-competitive [5, Theorem
7]. Therefore, the gap between the conditional lower bound and the algorithm
HLP-b is mainly due to the difficulty of the allocation.

5 Conclusion

We propose a (3 + 2
√
2)-approximation algorithm HLP-b for the (Pm,Pk) |

prec | Cmax problem. Our algorithm improves the approximation ratio upon the
previous 6-approximation algorithm known in the literature, by using a different
rounding procedure, which although is not optimal for the allocation phase, leads
to a better worst-case ratio for the whole problem. We also show a conditional

13

Scheduling on Hybrid Platforms: Improved Approximability Window

lower bound of 3 on the approximation ratio for this problem, assuming a gener-
alized variant of the unique games conjecture, improving over the previous result
of 2. The approximation ratio of HLP-b actually decreases towards 3 when m
and k are close, thus closing the gap with the lower bound for m = k. The
natural objective would be to close this gap for all values of m and k.

References

[1] Marcos Amaris, Giorgio Lucarelli, Clément Mommessin, and Denis Trys-
tram. Generic algorithms for scheduling applications on hybrid multi-core
machines. In European Conference on Parallel Processing, pages 220–231.
Springer, 2017.

[2] Nikhil Bansal and Subhash Khot. Optimal long code test with one free bit.
In 2009 50th Annual IEEE Symposium on Foundations of Computer Science,
pages 453–462. IEEE, 2009.

[3] Abbas Bazzi and Ashkan Norouzi-Fard. Towards tight lower bounds for
scheduling problems. In Algorithms-Esa 2015, pages 118–129. Springer, 2015.

[4] Raphaël Bleuse, Safia Kedad-Sidhoum, Florence Monna, Grégory Mounié,
and Denis Trystram. Scheduling independent tasks on multi-cores with
GPU accelerators. Concurrency and Computation: Practice and Experience,
27(6):1625–1638, 2015.

[5] Louis-Claude Canon, Loris Marchal, Bertrand Simon, and Frédéric Vivien.
Online scheduling of task graphs on heterogeneous platforms. IEEE Trans-
actions on Par. and Distr. Systems, 2019.

[6] Chandra Chekuri and Michael Bender. An efficient approximation algorithm
for minimizing makespan on uniformly related machines. J. of Algorithms,
41(2):212–224, 2001.

[7] Lin Chen, Deshi Ye, and Guochuan Zhang. Online scheduling of mixed
CPU-GPU jobs. Int. J. Found. Comput. Sci., 25(6):745–762, 2014.

[8] Fabián A Chudak and David B Shmoys. Approximation algorithms for
precedence-constrained scheduling problems on parallel machines that run
at different speeds. Journal of Algorithms, 30(2):323–343, 1999.

[9] Ronald L. Graham. Bounds on multiprocessing timing anomalies. SIAM
Journal of Applied Mathematics, 17(2):416–429, 1969.

[10] S. Kedad-Sidhoum, F. Monna, and D. Trystram. Scheduling tasks with
precedence constraints on hybrid multi-core machines. In 2015 IEEE Inter-
national Parallel and Distributed Processing Symposium Workshop, 2015.

[11] VS Anil Kumar, Madhav V Marathe, Srinivasan Parthasarathy, and Aravind
Srinivasan. Scheduling on unrelated machines under tree-like precedence
constraints. Algorithmica, 55(1):205–226, 2009.

14

Scheduling on Hybrid Platforms: Improved Approximability Window

[12] Jan Karel Lenstra and AHG Rinnooy Kan. Complexity of scheduling under
precedence constraints. Operations Research, 26(1):22–35, 1978.

[13] Shi Li. Scheduling to minimize total weighted completion time via time-
indexed linear programming relaxations. In 2017 IEEE 58th Annual Sympo-
sium on Foundations of Computer Science (FOCS), pages 283–294. IEEE,
2017.

[14] Ola Svensson. Hardness of precedence constrained scheduling on identical
machines. SIAM J. Comput., 40(5):1258–1274, 2011.

15

	1 Introduction
	2 Related Work
	3 A 5.83-approximation Algorithm
	3.1 The Algorithm HLP-b
	3.2 Analysis of the Algorithm HLP-b

	4 Conditional lower bound on the approximation factor
	5 Conclusion
	References

