Skip to main content

StreetConqAR: Augmented Reality Anchoring in Pervasive Games

  • Conference paper
  • First Online:
Serious Games (JCSG 2020)

Abstract

Pervasive games have increased in popularity with the rise of location-based games, but their content quality varies based on the area it is played in. We present a system of anchoring street signs into an approach based on augmented reality, allowing a game being played in all rural and urban areas without the need for custom content creation. By using publicly available map data, we allow for gameplay across city and country borders. Our approach identifies and augments street signs on a player’s camera feed. It then automatically creates an AR challenge, based on the classical game Mastermind, for the player to capture the virtual street. The virtual streets are integrated into one game world where players can conquer and take virtual ownership of whole blocks, districts, or cities. We achieve correct augmentation rates of 84.7% with initial delays of one second and continuous fluent augmentation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Althoff, T., White, R.W., Horvitz, E.: Influence of Pokémon GO on physical activity: study and implications. J. Med. Internet Res. 18(12), 1–14 (2016)

    Article  Google Scholar 

  2. Anastasi, R., et al.: Can you see me now? A citywide mixed-reality gaming experience. In: Proceedings of the UbiComp 2002. Springer (2002)

    Google Scholar 

  3. Azuma, R.T.: A survey of augmented reality. Presence: Teleoper. Virtual Environ. 6(4), 355–385 (1997)

    Google Scholar 

  4. Benford, S., et al.: Can you see me now? ACM Trans. Comput.-Hum. Interact. (TOCHI) 13(1), 100–133 (2006)

    Article  Google Scholar 

  5. Benford, S., et al.: The frame of the game: blurring the boundary between fiction and reality in mobile experiences. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI 2006, pp. 427–436. ACM, New York (2006). https://doi.org/10.1145/1124772.1124836

  6. Bhattacharya, A., et al.: Group interactions in location-based gaming: a case study of raiding in Pokémon GO. In: Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, pp. 1–12. ACM (2019)

    Google Scholar 

  7. Chalmers, M., Bell, M., Brown, B., Hall, M., Sherwood, S., Tennent, P.: Gaming on the edge: using seams in ubicomp games. In: Proceedings of the 2005 ACM SIGCHI International Conference on Advances in Computer Entertainment Technology, ACE 2005, pp. 306–309. ACM, New York (2005). https://doi.org/10.1145/1178477.1178533

  8. Cheok, A.D., et al.: Human Pacman: a mobile, wide-area entertainment system based on physical, social, and ubiquitous computing. Pers. Ubiquit. Comput. 8(2), 71–81 (2004). https://doi.org/10.1007/s00779-004-0267-x

  9. Colley, A., et al.: The geography of Pokémon GO: beneficial and problematic effects on places and movement. In: Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems, pp. 1179–1192. IEEE (2017)

    Google Scholar 

  10. Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for modelfitting with applications to image analysis and automated cartography. Commun. ACM 24(6), 381–395 (1981)

    Article  Google Scholar 

  11. Fragoso, V., Gauglitz, S., Zamora, S., Kleban, J., Turk, M.: TranslatAR: a mobile augmented reality translator. In: 2011 IEEE Workshop on Applications of Computer Vision (WACV), pp. 497–502 (2011). https://doi.org/10.1109/WACV.2011.5711545

  12. Golden, B.L., Levy, L., Vohra, R.: The orienteering problem. Naval Res. Logist. (NRL) 34(3), 307–318 (1987)

    Article  Google Scholar 

  13. Jähne, B.: Digitale Bildverarbeitung. Springer, Berlin (2010)

    Google Scholar 

  14. Lucas, B.D., Kanade, T.: An iterative image registration technique with an application to stereo vision. In: Proceedings of the 7th International Joint Conference on Artificial Intelligence, IJCAI 1981, San Francisco, CA, USA, vol. 2, pp. 674–679 (1981)

    Google Scholar 

  15. Magerkurth, C., Cheok, A.D., Mandryk, R.L., Nilsen, T.: Pervasive games: bringing computer entertainment back to the real world. Comput. Entertain. 3(3), 4 (2005). https://doi.org/10.1145/1077246.1077257

    Article  Google Scholar 

  16. Matyas, S.: Playful geospatial data acquisition by location-based gaming communities. IJVR 6(3), 1–10 (2007)

    Google Scholar 

  17. Motsinger, K.: Pokémon Go away: augmented reality games pose issues with trespass and nuisance. San Diego L. Rev. 54, 649 (2017)

    Google Scholar 

  18. Navarro, G.: A guided tour to approximate string matching. ACM Comput. Surv. (CSUR) 33(1), 31–88 (2001). https://doi.org/10.1145/375360.375365

    Article  Google Scholar 

  19. Niantic, Inc., Ingress. Game [Android, iOS]. Google, Menlo Park, United States of America (2013)

    Google Scholar 

  20. Nieuwdorp, E.: The pervasive discourse: an analysis. Comput. Entertain. 5(2), 13 (2007). https://doi.org/10.1145/1279540.1279553

    Article  Google Scholar 

  21. Nobuyuki, O.: A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 9(1), 62–66 (1979). https://doi.org/10.1109/TSMC.1979.431007

    Article  Google Scholar 

  22. Rosten, E., Drummond, T.: Fusing points and lines for high performance tracking. In: Proceedings of the Tenth IEEE International Conference on Computer Vision - ICCV 2005, vol. 2, pp. 1508–1515, IEEE, Washington, DC (2005). https://doi.org/10.1109/ICCV.2005.104

  23. Schlieder, C., Kiefer, P., Matyas, S.: Geogames: designing location-based games from classic board games. IEEE Intell. Syst. 21(5), 40–46 (2006). https://doi.org/10.1109/MIS.2006.93

    Article  Google Scholar 

  24. Shi, J., Tomasi, C.: Good features to track. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 593–600(1994). https://doi.org/10.1109/CVPR.1994.323794

  25. Six to Start: Zombies, Run! Game [Android, iOS, Windows Phone]. Six to Start, London, United Kingdom (2012)

    Google Scholar 

  26. Smith, R.: An overview of the tesseract OCR engine. In: Proceedings of the Ninth International Conference on Document Analysis and Recognition, ICDAR 2007, vol. 2, pp. 629–633. IEEE, Washington, DC (2007)

    Google Scholar 

  27. Smith, T.F., Waterman, M.S.: Identification of common molecular subsequences. J. Mol. Biol. 147(1), 195–197 (1981). https://doi.org/10.1016/0022-2836(81)90087-5

    Article  Google Scholar 

  28. Söbke, H., Hauge, J.B., Stefan, I.A.: Prime example ingress reframing the pervasive game design framework (PGDF). Int. J. Serious Games 4(2), 1–20 (2017)

    Google Scholar 

  29. The Pokémon Company, Nintendo, and Niantic, Inc., Pokémon GO. Game [Android, iOS]. Niantic, San Francisco, United States of America (2016)

    Google Scholar 

  30. Tregel, T., Möller, P.N., Göbel, S., Steinmetz, R.: Where’s Pikachu: route optimization in location-based games. In: 10th International Conference on Virtual Worlds and Games for Serious Applications (VS-Games), pp. 1–8. IEEE (2018)

    Google Scholar 

  31. Tregel, T., Müller, P.N., Göbel, S., Steinmetz, R.: Looking for Charizard: applying the orienteering problem to location-based games. Vis. Comput. 2019, 1–15 (2019). https://doi.org/10.1007/s00371-019-01737-z

  32. Tregel, T., Raymann, L., Göbel, S., Steinmetz, R.: Geodata classification for automatic content creation in location-based games. In: Alcañiz, M., Göbel, S., Ma, M., Fradinho Oliveira, M., Baalsrud Hauge, J., Marsh, T. (eds.) JCSG 2017. LNCS, vol. 10622, pp. 212–223. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-70111-0_20

    Chapter  Google Scholar 

  33. Xian, Y., et al.: An initial evaluation of the impact of Pokémon GO on physical activity. J. Am. Heart Assoc. 6(5), e005341 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Tregel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tregel, T., Dutz, T., Hock, P., Müller, P.N., Achenbach, P., Göbel, S. (2020). StreetConqAR: Augmented Reality Anchoring in Pervasive Games. In: Ma, M., Fletcher, B., Göbel, S., Baalsrud Hauge, J., Marsh, T. (eds) Serious Games. JCSG 2020. Lecture Notes in Computer Science(), vol 12434. Springer, Cham. https://doi.org/10.1007/978-3-030-61814-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-61814-8_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-61813-1

  • Online ISBN: 978-3-030-61814-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics