Skip to main content

Flex Your Muscles: EMG-Based Serious Game Controls

  • Conference paper
  • First Online:
Serious Games (JCSG 2020)

Abstract

In recent years, non-traditional input devices for digital games and applications such as wearable sensors have become increasingly available and affordable. Electromyography (EMG) promises some unique advantages over traditional input devices such as keyboards or gamepads by collecting input data directly at a person’s muscle. As long as the corresponding muscle is intact, EMG can be used even when physical movement is not possible, for example when a person is injured or has an amputated limb. It also allows for unique wearable positioning on the body, potentially allowing for a larger freedom of movement.

In this paper, we examine whether an EMG-based input device is feasible to control an in-game character in a digital game. In order to do so, we first assess different EMG-related technologies and available EMG devices. Based on this assessment, we develop an EMG-based input device that can be connected to a computer. We develop a side scrolling game which can be connected to the EMG-based input device and allows for the player to switch between keyboard- and EMG-based controls. Lastly, we evaluate our developed system empirically and discuss the feasibility of EMG-based game controllers based on observed practical and theoretical limitations of the technology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://wiki.seeedstudio.com/Grove-EMG_Detector/ - Last visited on 03.07.2020.

  2. 2.

    https://www.sparkfun.com/products/13723 - Last visited on 03.07.2020.

  3. 3.

    https://www.vdc-fellbach.de/leistungen/technikbewertung-var/thalmic-labs-myo-gesture-control-armband/ - Last visited on 03.07.2020.

  4. 4.

    https://www.cometasystems.com/products/mini-wave - Last visited on 03.07.2020.

  5. 5.

    https://www.delsys.com/trigno/research/ - Last visited on 03.07.2020.

  6. 6.

    https://www.delsys.com/bagnoli/ - Last visited on 03.07.2020.

  7. 7.

    https://unity.com/ - Last visited on 04.07.2020.

References

  1. Ackerman, E.: Myo Armband Provides Effortless Gesture Control of Robots, Anything Else - IEEE Spectrum, June 2020. https://spectrum.ieee.org/automaton/robotics/robotics-hardware/thalmic-myo-armband-provides-effortless-gesture-control-of-robots. Library Catalog: spectrum.ieee.org

  2. Ahmed, S.F., et al.: Mobility assistance robot for disabled persons using electromyography (EMG) sensor. In: 2018 IEEE International Conference on Innovative Research and Development (ICIRD), pp. 1–5. IEEE (2018)

    Google Scholar 

  3. Alves, N., Chau, T.: The design and testing of a novel mechanomyogram-driven switch controlled by small eyebrow movements. J. NeuroEng. Rehabil. 7(1), 22 (2010). https://doi.org/10.1186/1743-0003-7-22. ISSN 1743–0003

  4. Armiger, R.S., Vogelstein, R.J.: Air-Guitar Hero: a real-time video game interface for training and evaluation of dexterous upper-extremity neuroprosthetic control algorithms. In: 2008 IEEE Biomedical Circuits and Systems Conference, pp. 121–124 (2008)

    Google Scholar 

  5. Borisov, I.I., Borisova, O.V., Krivosheev, S.V., Oleynik, R.V., Reznikov, S.S.: Prototyping of EMG-controlled prosthetic hand with sensory system. IFAC-PapersOnLine 50(1), 16027–16031 (2017)

    Article  Google Scholar 

  6. Islam, A., Sundaraj, K., Ahmad, B., Ahamed, N.U., Ali, A.: Mechanomyography sensors for muscle assessment: a brief review. J. Phys. Ther. Sci. 24(12), 1359–1365 (2012)

    Article  Google Scholar 

  7. Khushaba, R.N., Kodagoda, S., Takruri, M., Dissanayake, G.: Toward improved control of prosthetic fingers using surface electromyogram (EMG) signals. Expert Syst. Appl. 39(12), 10731–10738 (2012)

    Article  Google Scholar 

  8. Konrad, P.: EMG-Fibel. - Eine praktische Einführung in die kinesiologische Elektromyographie, January 2011

    Google Scholar 

  9. Krivosheev, S., Borisov, I., Olejnik, R., Reznikov, S.: First Experiments and Results, Various Control Strategies for the Artificial Hand Using Surface EMG Sensors (2016)

    Google Scholar 

  10. Latif, S., Javed, J., Ghafoor, M., Moazzam, M., Khan, A.A.: Design and development of muscle and flex sensor controlled robotic hand for disabled persons. In: 2019 International Conference on Applied and Engineering Mathematics (ICAEM), pp. 1–6. IEEE (2019)

    Google Scholar 

  11. Oppenheim, H., Armiger, R.S., Vogelstein, R.J.: WiiEMG: a real-time environment for control of the Wii with surface electromyography. In: Proceedings of 2010 IEEE International Symposium on Circuits and Systems, pp. 957–960 (2010)

    Google Scholar 

  12. Pai, Y.S., Dingler, T., Kunze, K.: Assessing hands-free interactions for VR using eye gaze and electromyography. Virtual Real. 23(2), 119–131 (2019). https://doi.org/10.1007/s10055-018-0371-2. ISSN 1434–9957

  13. Pizzolato, S., Tagliapietra, L., Cognolato, M., Reggiani, M., Müller, H., Atzori, M.: Comparison of six electromyography acquisition setups on hand movement classification tasks. PLOS One 12(10), e0186132 (2017). https://doi.org/10.1371/journal.pone.0186132. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0186132. ISSN 1932–6203

  14. Prahm, C., Vujaklija, I., Kayali, F., Purgathofer, P., Aszmann, O.C.: Game-based rehabilitation for myoelectric prosthesis control. JMIR Serious Games 5(1),e3 (2017). https://doi.org/10.2196/games.6026. http://www.ncbi.nlm.nih.gov/pubmed/28183689. ISSN 2291–9279

  15. von Rosenberg, H.: Identifikation von Willkürsignalen zur Bewegungskontrolle einer Beinprothese (2012)

    Google Scholar 

  16. Talib, I., Sundaraj, K.,Lam, C.K.: Choice of mechanomyography sensors for diverse types of muscle activities. J. Telecommun. Electron. Comput. Eng. (2018, accepted for publication)

    Google Scholar 

  17. Weitz, M.: Messung und Analyse myoelektrischer Signale. Ph.D. thesis, Diplomarbeit. Universität Kassel, Kassel (2006)

    Google Scholar 

  18. Wheeler, K.R.: Device control using gestures sensed from EMG. In: Proceedings of the 2003 IEEE International Workshop on Soft Computing in Industrial Applications, SMCia/03, pp. 21–26. IEEE (2003)

    Google Scholar 

  19. Wu, J., Sun, L., Jafari, R.: A wearable system for recognizing American sign language in real-time using IMU and surface EMG sensors. IEEE J. Biomed. Health Inform. 20(5), 1281–1290 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philipp Niklas Müller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Müller, P.N. et al. (2020). Flex Your Muscles: EMG-Based Serious Game Controls. In: Ma, M., Fletcher, B., Göbel, S., Baalsrud Hauge, J., Marsh, T. (eds) Serious Games. JCSG 2020. Lecture Notes in Computer Science(), vol 12434. Springer, Cham. https://doi.org/10.1007/978-3-030-61814-8_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-61814-8_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-61813-1

  • Online ISBN: 978-3-030-61814-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics