Skip to main content

Towards a Conceptual Framework for the Development of Artificial Muscles Using SMA

  • Conference paper
  • First Online:
Applied Computer Sciences in Engineering (WEA 2020)

Abstract

This work presents a conceptual framework for the design, development, and construction of artificial muscles as an actuator mechanism in bio-inspired systems. This framework is supported by current theories of soft robotics and the analysis of smart materials performance. Specifically, shape memory alloy materials (SMA) mathematical behavior is reviewed. Current Literature about these topics points to the experimentation as the main source for collecting the data and information of materials, that is required for the design of artificial muscles. The behavior of the materials can vary drastically when modifying simple variables in the workspace and the way of varying levels of temperature also influences its handling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Laschi, C., Cianchetti, M.: Soft robotics: new perspectives for robot bodyware and control. Front. Bioeng. Biotechnol. (2014). 10.3389/fbioe.2014.00003

    Google Scholar 

  2. Trivedi, D., Rahn, C., Kier, W., Walker, I.: Soft robotics: biological inspiration, state of the art, and future research. Appl. Bionics Biomech. 5, 99–117 (2008). https://doi.org/10.1080/11762320802557865

    Article  Google Scholar 

  3. Nurzaman, S., Iida, F., Laschi, C., Ishiguro, A., Wood, R.: Soft Robotics [TC Spotlight], vol. 20 (2013)

    Google Scholar 

  4. Lopez-Garcia, O., Carnicero, A., Ruiz Pablos, R.: Materiales inteligentes I/II: introducción a los materiales del siglo XXI, vol. 80 (2003)

    Google Scholar 

  5. Diab, M.O., et al.: Electromechanical model of IPMC artificial muscle. In: 2014 World Symposium on Computer Applications & Research (WSCAR), pp. 1–5 (2014). https://doi.org/10.1109/WSCAR.2014.6916820

  6. Bar Cohen, Y.: Electroactive Polymer (EAP) Actuators as Artificial Muscles, 2o. The International Society for Optical Engineering, Bellingham

    Google Scholar 

  7. Polímeros Electroactivos (2018). https://www.hisour.com/es/electroactive-polymers-42852/

    Google Scholar 

  8. Akhtar, S.N., Cherusseri, J., Ramkumar, J., Kar, K.K.: Ionic polymer metal composites. In: Kar, K.K. (ed.) Composite Materials, pp. 223–249. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-49514-8_7

    Chapter  Google Scholar 

  9. Cismasiu, C.: Shape Memory Alloys (2010)

    Google Scholar 

  10. Mohd Jani, J., Leary, M., Subic, A., Gibson, M.: A review of shape memory alloy research, applications and opportunities, vol. 56 (2014)

    Google Scholar 

  11. Moreno, L., Muñoz, M., Garrido, S., Blanco, D.: Materiales inteligentes: aleaciones con memoria de forma (SMA) (2009)

    Google Scholar 

  12. de la Flor López, S.: Simulación numérica y correlación experimental de las propiedades mecánicas en las aleaciones con memoria de forma. TDX (Tesis Dr. en Xarxa), June 2005

    Google Scholar 

  13. Müller, I., Xu, H.: On the pseudo-elastic hysteresis. Acta Metall. Mater. 39(3), 263–271 (1991). https://doi.org/10.1016/0956-7151(91)90305-K

    Article  Google Scholar 

  14. Patoor, E., Berveiller, M.: Micromechanical modelling of the thermomechanical behavior of shape memory alloys. In: Berveiller, M., Fischer, F.D. (eds.) Mechanics of Solids with Phase Changes. ICMS, vol. 368, pp. 121–188. Springer, Vienna (1997). https://doi.org/10.1007/978-3-7091-2660-8_5

    Chapter  Google Scholar 

  15. Tanaka, K., Nishimura, F., Hayashi, T., Tobushi, H., Lexcellent, C.: Phenomenological analysis on subloops and cyclic behavior in shape memory alloys under mechanical and/or thermal loads. Mech. Mater. 19(4), 281–292 (1995). https://doi.org/10.1016/0167-6636(94)00038-I

    Article  Google Scholar 

  16. Ramirez, J., Rubiano, A., Castiblanco, P.: Soft driving epicyclical mechanism for robotic finger. Actuators 8(3) (2019). https://doi.org/10.3390/act8030058

  17. Zhu, P., et al.: Characterization and modeling of three-dimensional self-healing shape memory alloy-reinforced metal-matrix composites. Mech. Mater. 103, 1–10 (2016). https://doi.org/10.1016/j.mechmat.2016.09.005

    Article  Google Scholar 

  18. Vantadori, S., Carpinteri, A., Di Cocco, V., Iacoviello, F., Natali, S.: Fatigue analysis of a near-equiatomic pseudo-elastic NiTi SMA. Theoret. Appl. Fract. Mech. 94, 110–119 (2018). https://doi.org/10.1016/j.tafmec.2018.01.012

    Article  Google Scholar 

  19. Staugaard Jones, J.A.: Anatomía del ejercicio y el movimiento. Editorial Paidotribo (2014)

    Google Scholar 

  20. Ramirez, J.L.: Development of an artificial muscle for a soft robotic hand prosthesis, universite Paris Ouest (2016)

    Google Scholar 

  21. Hill, A.V.: The series elastic component of muscle. Proc. R. Soc. Lond. B Biol. Sci. 137(887), 273–280 (1950). https://doi.org/10.1098/rspb.1950.0035

    Article  Google Scholar 

  22. Zajac, F.E.: Muscle and tendon: properties, models, scaling, and application to biomechanics and motor control. Crit. Rev. Biomed. Eng. 17(4), 359–411 (1989)

    Google Scholar 

  23. Abeyaratne, R., Sang-Joo, K., Knowles, J.K.: A one-dimensional continuum model for shape-memory alloys. Int. J. Solids Struct. 31(16), 2229–2249 (1994). https://doi.org/10.1016/0020-7683(94)90208-9

    Article  MathSciNet  MATH  Google Scholar 

  24. Vivet, A., Lexcellent, C.: Micromechanical modelling for tension–compression pseudoelastic behavior of AuCd single crystals. Eur. Phys. J. - Appl. Phys. 4(2), 125–132 (1998). https://doi.org/10.1051/epjap:1998251

    Article  Google Scholar 

  25. Brinston, C.: One dimensional constitutive behavior of shape memory alloys: thermomechanical derivation with non-constant material function and redefined martensite internal variable. J. Intell. Mater. Syst. Struct. 4, 229–242 (1993). https://doi.org/10.1177/1045389X9300400213

    Article  Google Scholar 

  26. Bassil, M., Davenas, J., EL Tahchi, M.: Electrochemical properties and actuation mechanisms of polyacrylamide hydrogel for artificial muscle application. Sens. Actuators B Chem. 134(2), 496–501 (2008). https://doi.org/10.1016/j.snb.2008.05.025

    Article  Google Scholar 

  27. Wheeler, R.W., et al.: Engineering design tools for shape memory alloy actuators : CASMART collaborative best practices and case studies. In: SMASIS2016-9183, pp. 1–21 (2016)

    Google Scholar 

  28. Doroudchi, A., Zakerzadeh, M.R.: An experimental study on controlling a fast response SMA-actuated rotary actuator. In: 2017 5th RSI International Conference on Robotics and Mechatronics (ICRoM), pp. 144–149 (2017). https://doi.org/10.1109/icrom.2017.8466198

  29. Drahoš, P., Kutiš, V.: Modelling and simulation of thermal field of SMA actuator. In: Proceedings of the 13th International Carpathian Control Conference (ICCC), pp. 131–136 (2012). https://doi.org/10.1109/carpathiancc.2012.6228629

  30. Elahinia, M.H., Ashrafiuon, H., Ahmadian, M., Tan, H.: A temperature-based controller for a shape memory alloy actuator. J. Vib. Acoust. Trans. ASME 127(3), 285–291 (2005). https://doi.org/10.1115/1.1898335

    Article  Google Scholar 

  31. Khodayari, A., Zarefar, B., Kheirikhah, M.M., Mirsadeghi, E.: Force control of a SMA actuated gripper by using self tuning fuzzy PID controller. In: 2011 IEEE International Conference on Control System, Computing and Engineering, pp. 312–316 (2011). https://doi.org/10.1109/iccsce.2011.6190543

  32. Jung, S., Bae, J., Moon, I.: Lightweight prosthetic hand with five fingers using SMA actuator. In: 2011 11th International Conference on Control, Automation and Systems, pp. 1797–1800 (2011)

    Google Scholar 

  33. Colorado, J., Barrientos, A., Rossi, C.: Músculos Inteligentes en Robots Biológicamente Inspirados: Modelado, Control y Actuación. Rev. Iberoam. Automática e Informática Ind. RIAI 8(4), 385–396 (2011). https://doi.org/10.1016/j.riai.2011.09.005

    Article  Google Scholar 

  34. Li, J., Tian, H.: Position control of SMA actuator based on inverse empirical model and SMC-RBF compensation. Mech. Syst. Signal Process. 108, 203–215 (2018). https://doi.org/10.1016/j.ymssp.2018.02.004

    Article  Google Scholar 

  35. Moura, T.D.O., Tsukamoto, T., de Lima Monteiro, D.W., Tanaka, S.: Hybrid MEMS-SMA structure for intraocular lenses. Sens. Actuators A Phys. 243, 15–24 (2016). https://doi.org/10.1016/j.sna.2016.03.005

  36. Teramoro Ohara, A.: Importancia clinica del punto austenitico final en la seleccion de las aleaciones de niquel-titanio para su aplicacion en arcos utilizados en ortodoncia. Rev. Odontol. Mex. 20, 166–173 (2016)

    Google Scholar 

  37. Hoh, D.J., Hoh, B.L., Amar, A.P., Wang, M.Y.: Shape memory alloys: metallurgy, biocompatibility, and biomechanics for neurosurgical applications. Oper. Neurosurg. 64(suppl_5), ons199–ons214 (2009). https://doi.org/10.1227/01.neu.0000330392.09889.99

  38. Guo, S., Sun, X., Ishii, K., Guo, J.: SMA Actuator-based novel type of peristatic micropump. In: 2008 International Conference on Information and Automation, pp. 1620–1625 (2008). https://doi.org/10.1109/ICINFA.2008.4608263

  39. Peng, C., Yin, Y.H., Hong, H.B., Zhang, J.J., Chen, X.: Bio-inspired design methodology of sensor-actuator-structure integrated system for artificial muscle using SMA. Procedia CIRP 65, 299–303 (2017). https://doi.org/10.1016/j.procir.2017.04.016

    Article  Google Scholar 

  40. Zhang, J., Yin, Y., Zhu, J.: Sigmoid-based hysteresis modeling and high-speed tracking control of SMA-artificial muscle. Sens. Actuators A Phys. 201, 264–273 (2013). https://doi.org/10.1016/j.sna.2013.07.036

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paola Andrea Castiblanco .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Castiblanco, P.A., Balcázar-Camacho, D.A., Ramirez, J.L., Rubiano, A. (2020). Towards a Conceptual Framework for the Development of Artificial Muscles Using SMA. In: Figueroa-García, J.C., Garay-Rairán, F.S., Hernández-Pérez, G.J., Díaz-Gutierrez, Y. (eds) Applied Computer Sciences in Engineering. WEA 2020. Communications in Computer and Information Science, vol 1274. Springer, Cham. https://doi.org/10.1007/978-3-030-61834-6_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-61834-6_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-61833-9

  • Online ISBN: 978-3-030-61834-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics