Skip to main content

Computational Simulation of Stress Distribution in a Magnesium Matrix Composite Reinforced with Carbon Nanotubes

  • Conference paper
  • First Online:
Applied Computer Sciences in Engineering (WEA 2020)

Abstract

The development of composite materials has brought with it global questions about its behavior on materials science where the computational simulations have the methodology to increase the knowledge about them. To exemplify the usefulness of the computational methodologies in simulations of mechanical characterization, one of the newest composite materials is used in a tensile test, this material is a magnesium matrix composite reinforcement with carbon nanotubes (CNTs). Furthermore was implemented a constitutive model to a linear-elastic behavior with the inclusion of Elasticity Modulus and Poisson Ratio properties. The computational model has been developed in Matlab software and includes the design of five reticules with 2500 nodes and insertions of 0%, 1%, 4%, 8%, and 12% of carbon nanotubes. Additionally, the finite difference method (FDM) has been applied and showed that carbon nanotubes improve mechanical properties of monolithic magnesium alloys achieving an 80% decrease in the displacement of the composite, also ensure the pertinence of the computational simulations for the future of the materials science.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Soutis, C.: Introduction: engineering requirements for aerospace composite materials. In: Irving, P.E., Soutis, C. (eds.) Polymer Composites in the Aerospace Industry. Woodhead Publishing, Cambridge (2015). https://doi.org/10.1016/B978-0-85709-523-7.00001-3

    Chapter  Google Scholar 

  2. Wardlow, G.D.: A changing world with different rules–new opportunities for magnesium alloys?. In: Presentation at the 64th Annual World Magnesium Conference, Vancouver, BC, Canada, 13th–15th May 2007 (2007)

    Google Scholar 

  3. Oak Ridge National Laboratory, Transportation Energy Data Book, 34th ed. Oak Ridge, TN, Oak Ridge National Laboratory (2015). http://cta.ornl.gov/data/chapter4.shtml

  4. Joost, W.J., Krajewski, P.E.: Towards magnesium alloys for high-volume automotive applications. Scripta Mater. 128, 107–112 (2017). https://doi.org/10.1016/j.scriptamat.2016.07.035. ISSN 1359-6462

    Article  Google Scholar 

  5. Shetty, N., Shahabaz, S.M., Sharma, S.S., Divakara, S.: A review on finite element method for machining of composite materials. Compos. Struct. (2017). https://doi.org/10.1016/j.compstruct.2017.06.012

    Article  Google Scholar 

  6. Shirvanimoghaddam, K., Hamim, S.U., Akbari, M.K., et al.: Carbon fiber reinforced metal matrix composites: fabrication processes and properties. Compos. A Appl. Sci. Manuf. 92, 70–96 (2017). https://doi.org/10.1016/j.compositesa.2016.10.032. ISSN 1359-835X

    Article  Google Scholar 

  7. Tjong, S.C.: Recent progress in the development and properties of novel metal matrix nanocomposites reinforced with carbon nanotubes and graphene nanosheets. Mater. Sci. Eng. R Rep. 74(10), 281–350 (2013). https://doi.org/10.1016/j.mser.2013.08.001. ISSN 0927-796X

    Article  Google Scholar 

  8. Esawi, A.M.K., Morsi, K., Sayed, A., Taher, M., Lanka, S.: Effect of carbon nanotube (CNT) content on the mechanical properties of CNT-reinforced aluminium composites. Compos. Sci. Technol. 70(16), 2237–2241 (2010)

    Article  Google Scholar 

  9. Esawi, A.M.K., Morsi, K., Sayed, A., Taher, M., Lanka, S.: The influence of carbon nanotube (CNT) morphology and diameter on the processing and properties of CNT-reinforced aluminium composites. Compos. A Appl. Sci. Manuf. 42(3), 234–243 (2011). https://doi.org/10.1016/j.compositesa.2010.11.008. ISSN 1359-835X

    Article  Google Scholar 

  10. Rashad, M., Pan, F., Zhang, J., Asif, M.: Use of high energy ball milling to study the role of graphene nanoplatelets and carbon nanotubes reinforced magnesium alloy. J. Alloy. Compd. (2015). https://doi.org/10.1016/j.jallcom.2015.06.051

    Article  Google Scholar 

  11. Che, Q., Wang, K., Wang, W., et al.: Microstructure and mechanical properties of magnesium-lithium alloy prepared by friction stir processing. Rare Met. (2019). https://doi.org/10.1007/s12598-019-01217-2

    Article  Google Scholar 

  12. Han, G., et al.: The influence of CNTs on the microstructure and ductility of CNT/Mg composites. Mater. Lett. (2016). https://doi.org/10.1016/j.matlet.2016.06.021

    Article  Google Scholar 

  13. Wang, X.J., Hu, X.S., Wu, K., Wang, L.Y., Huang, Y.D.: Evolutions of microstructure and mechanical properties for SiCp/AZ91 composites with different particle contents during extrusion. Mater. Sci. Eng., A 636, 138–147 (2015). https://doi.org/10.1016/j.msea.2015.03.058. ISSN 0921-5093

    Article  Google Scholar 

  14. Behera, D.R., Das, S.R., Jha, R.: An Overview of the Properties and Biomedical Applications of Multi-Walled Carbon Nanotubes (2020). https://doi.org/10.2139/ssrn.3548429

  15. Zeng, X., Zhou, G., Xu, Q., Xiong, Y., Luo, C., Wu, J.: A new technique for dispersion of carbon nanotube in a metal melt. Mater. Sci. Eng., A 527(20), 5335–5340 (2010). https://doi.org/10.1016/j.msea.2010.05.005. ISSN 0921-5093

    Article  Google Scholar 

  16. Merino, C.A.I., Sillas, J.E.L., Meza, J.M., Ramirez, J.M.H.: Metal matrix composites reinforced with carbon nanotubes by an alternative technique. J. Alloy. Compd. 707, 257–263 (2017). https://doi.org/10.1016/j.jallcom.2016.11.348. ISSN 0925-8388

    Article  Google Scholar 

  17. Kandpal, B.C., Kumar, J., Singh, H.: Manufacturing and technological challenges in stir casting of metal matrix composites-a Review. Mater. Today Proc. 5(1), 5–10 (2018). https://doi.org/10.1016/j.matpr.2017.11.046. ISSN 2214-7853

    Article  Google Scholar 

  18. Koyanagi, J., Sato, Y., Sasayama, T., Okabe, T., Yoneyama, S.: Numerical simulation of strain-rate dependent transition of transverse tensile failure mode in fiber-reinforced composites. Compos. A Appl. Sci. Manuf. 56, 136–142 (2014). https://doi.org/10.1016/j.compositesa.2013.10.002. ISSN 1359-835X

    Article  Google Scholar 

  19. Badriev, I.B., Makarov, M.V., Paimushin, V.N.: Mathematical simulation of nonlinear problem of three-point composite sample bending test. Procedia Eng. 150, 1056–1062 (2016). https://doi.org/10.1016/j.proeng.2016.07.214. ISSN 1877-7058

    Article  Google Scholar 

  20. Charitos, I., Drougkas, A., Kontou, E.: Prediction of the elastic modulus of LLDPE/CNT nanocomposites by analytical modeling and finite element analysis. Mater. Today Commun. 24, 101070 (2020). https://doi.org/10.1016/j.mtcomm.2020.101070. ISSN 2352-4928

    Article  Google Scholar 

  21. Kashfi, M., Majzoobi, G.H., Bonora, N., Iannitti, G., Ruggiero, A., Khademi, E.: A study on fiber metal laminates by using a new damage model for composite layer. Int. J. Mech. Sci. (2017). https://doi.org/10.1016/j.ijmecsci.2017.06.045

    Article  Google Scholar 

  22. Zhang, X., Chen, Y., Hu, J.: Recent advances in the development of aerospace materials. Prog. Aerosp. Sci. 97, 22–34 (2018). https://doi.org/10.1016/j.paerosci.2018.01.001. ISSN 0376-0421

    Article  Google Scholar 

  23. Li, H., Dai, X., Zhao, L., et al.: Microstructure and properties of carbon nanotubes-reinforced magnesium matrix composites fabricated via novel in situ synthesis process. J. Alloy. Compd. 785, 146–155 (2019). https://doi.org/10.1016/j.jallcom.2019.01.144. ISSN 0925-8388

    Article  Google Scholar 

  24. Gzyl, M., Rosochowski, A., Boczkal, S., Olejnik, L.: The role of microstructure and texture in controlling mechanical properties of AZ31B magnesium alloy processed by I-ECAP. Mater. Sci. Eng., A 638, 20–29 (2015). https://doi.org/10.1016/j.msea.2015.04.055. ISSN 0921-5093

    Article  Google Scholar 

  25. Castro, F., Jiang, Y.: Fatigue life and early cracking predictions of extruded AZ31B magnesium alloy using critical plane approaches. Int. J. Fatigue 88, 236–246 (2016). https://doi.org/10.1016/j.ijfatigue.2016.04.002. ISSN 0142-1123

    Article  Google Scholar 

  26. Cha, J., Jin, S., Shim, J.H., Park, C.S., Ryu, H.J., Hong, S.H.: Functionalization of carbon nanotubes for fabrication of CNT/epoxy nanocomposites. Mater. Des. 95, 1–8 (2016). https://doi.org/10.1016/j.matdes.2016.01.077. ISSN 0264-1275

    Article  Google Scholar 

  27. Song, Y.S., Youn, J.R.: Modeling of effective elastic properties for polymer based carbon nanotube composites. Polymer 47, 1741–1748 (2006). https://doi.org/10.1016/j.polymer.2006.01.013. ISSN 0032-3861

    Article  Google Scholar 

  28. Kuo, S.-Y., Shiau, L.-C.: Buckling and vibration of composite laminated plates with variable fiber spacing. Compos. Struct. 90, 196–200 (2009). https://doi.org/10.1016/j.compstruct.2009.02.013. ISSN 0263-8223

    Article  Google Scholar 

  29. Han, G., Wang, Z., Liu, K., Li, S., Du, X., Du, W.: Synthesis of CNT-reinforced AZ31 magnesium alloy composites with uniformly distributed CNTs. Mater. Sci. Eng., A 628, 350–357 (2015). https://doi.org/10.1016/j.msea.2015.01.039. ISSN 0921-5093

    Article  Google Scholar 

  30. Goh, C.S., Wei, J., Lee, L.C., Gupta, M.: Simultaneous enhancement in strength and ductility by reinforcing magnesium with carbon nanotubes. Mater. Sci. Eng., A 423(1–2), 153–156 (2006). https://doi.org/10.1016/j.msea.2005.10.071. ISSN 0921-5093

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gustavo Suárez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Duarte, M., Alvarez, M., López, A., Portillo, L., Suárez, G., Niño, J. (2020). Computational Simulation of Stress Distribution in a Magnesium Matrix Composite Reinforced with Carbon Nanotubes. In: Figueroa-García, J.C., Garay-Rairán, F.S., Hernández-Pérez, G.J., Díaz-Gutierrez, Y. (eds) Applied Computer Sciences in Engineering. WEA 2020. Communications in Computer and Information Science, vol 1274. Springer, Cham. https://doi.org/10.1007/978-3-030-61834-6_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-61834-6_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-61833-9

  • Online ISBN: 978-3-030-61834-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics