Skip to main content

Using Numerical Modelling and Artificial Intelligence for Predicting the Degradation of the Resistance to Vertical Shear in Steel – Concrete Composite Beams Under Fire

  • Conference paper
  • First Online:
Applied Computer Sciences in Engineering (WEA 2020)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1274))

Included in the following conference series:

  • 943 Accesses

Abstract

In this paper the combination of numerical modelling and artificial intelligence for predicting the degradation of the resistance to vertical shear in composite beams under fire is exposed. This work presents a technique that integrates the backpropagation learning method with a method to calculate the initial weights in order to train the Multilayer Perceptron Model (MLP). The method used to calculate the initial weights of the MLP is based on the quality of similarity measure proposed on the framework of the extended Rough Set Theory (RST). The artificial neural network models were trained and tested using numerical results from the thermal-structural analysis carried out by the two-dimensional fire-dedicated FE software Super Tempcalc and the computational tool SCBEAM which was developed by the authors for the resistances determinations. The results revealed that the proposed approach accurately permits the prediction of the degradation of the resistance to vertical shear in steel – concrete composite beams under fire.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. American institute of steel construction. specification for structural steel buildings, ANSI/AISC (2010)

    Google Scholar 

  2. European Committee for Standardization. EN 1994-1-1: 2004. Eurocode 4. Design of Composite Steel and Concrete Structures, Part 1–1: General Rules and Rules for Buildings (2004)

    Google Scholar 

  3. European Committee for Standardization. EN 1994-1-2: 2005. Eurocode 4. Design of Composite Steel and Concrete Structures, Part 1. 2: General Rules - Structural Fire Design (2005)

    Google Scholar 

  4. Comitê Brasileiro da Construção Civil ABNT/CB-2. ABNT NBR 14323. Associação Brasileira de Normas Técnicas. Rio de Janeiro, Brasil. Projeto de estruturas de aço e de estruturas mistas de aço e concreto de edifícios em situação de incêndio (2012)

    Google Scholar 

  5. Hocenski, Z., Antunovic, M., Filko, D.: Accelerated gradient learning algorithm for neural network weights update. In: Lovrek, I., Howlett, R.J., Jain, L.C. (eds.) KES 2008. LNCS (LNAI), vol. 5177, pp. 49–56. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85563-7_12

    Chapter  Google Scholar 

  6. Filiberto Cabrera, Y., Bello Pérez, R., Mota, Y.C., Jimenez, G.R.: Improving the MLP learning by using a method to calculate the initial weights of the network based on the quality of similarity measure. In: Batyrshin, I., Sidorov, G. (eds.) MICAI 2011. LNCS (LNAI), vol. 7095, pp. 351–362. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25330-0_31

    Chapter  Google Scholar 

  7. Filiberto, Y., Frias, M., Larrua, R., Bello, R.: Induction of rules based on similarity relations for imbalance datasets. A case of study. In: Figueroa-García, J.C., López-Santana, E.R., Ferro-Escobar, R. (eds.) WEA 2016. CCIS, vol. 657, pp. 65–73. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-50880-1_6

    Chapter  Google Scholar 

  8. Arias, D., Filiberto, Y., Bello, R.: Methods for generating contexts based on similarity relations to multigranulation. In: Figueroa-García, J.C., López-Santana, E.R., Rodriguez-Molano, J.I. (eds.) WEA 2018. CCIS, vol. 915, pp. 114–123. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00350-0_10

    Chapter  Google Scholar 

  9. Alvarez, Y.R., Mota, Y.C., Cabrera, Y.F., Hilarión, I.G., Hernández, Y.F., Dominguez, M.F.: Similar prototype methods for class imbalanced data classification. In: Bello, R., Falcon, R., Verdegay, J.L. (eds.) Uncertainty Management with Fuzzy and Rough Sets. SFSC, vol. 377, pp. 193–209. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-10463-4_11

    Chapter  Google Scholar 

  10. Chen, Y., Kopp, G.A., Surry, D.: Prediction of pressure coefficients on roofs of low buildings using artificial neural networks. J. Wind. Eng. Ind. Aerodyn. 91, 423–441 (2003)

    Article  Google Scholar 

  11. Raghu Prasad, B.K., Eskandari, H., Venkatarama Reddy, B.V.: Prediction of compressive strength of SCC and HPC with high volume fly ash using ANN. Constr. Build. Mater. 23(1), 117–128 (2009)

    Google Scholar 

  12. SarIdemir, M.: Prediction of compressive strength of concretes containing metakaolin and silica fume by artificial neural networks. Adv. Eng. Softw. 40(5), 350–355 (2009)

    Article  Google Scholar 

  13. Ashu, J., Sanjeev Kumar, J., Sudhir, M.: Modeling and analysis of concrete slump using artificial neural networks. J. Mater. Civil Eng. 20(9), 628–633 (2008)

    Google Scholar 

  14. Topçu, I.B., Karakurt, C., Sandemir, M.: Predicting the strength development of cements produced with different pozzolans by neural network and fuzzy logic. Mater. Des. 29, 1986–1991 (2008)

    Article  Google Scholar 

  15. Caglar, N.: Neural network based approach for determining the shear strength of circular reinforced concrete columns. Constr. Build. Mater. 23(10), 686–691 (2009)

    Article  Google Scholar 

  16. Garzón-Roca, J., Adam, J.M., Sandoval, C., Roca, P.: Estimation of the axial behaviour of masonry walls based on artificial neural networks. Comput. Struct. 125, 145–152 (2013)

    Article  Google Scholar 

  17. Ahn, N., Jang, H., Park, D.K.: Presumption of shear strength of steel fiber reinforced concrete beam using artificial neural network model. J. Appl. Polym. Sci. 103, 2351–2358 (2007)

    Google Scholar 

  18. Inel, M.: Modeling ultimate deformation capacity of RC columns using artificial neural networks. Eng. Struct. 29, 329–335 (2007)

    Article  Google Scholar 

  19. Hasançebi, O., Dumlupınar, T.: Linear and nonlinear model updating of reinforced concrete t-beam bridges using artificial neural networks. Comput. Struct. 119, 1–11 (2013)

    Article  Google Scholar 

  20. Miller, B.: Application of neural networks for structure updating. Comput. Assist. Mech. Eng. Sci. 18, 191–203 (2011)

    Google Scholar 

  21. Zhang, S., Chen, S., Wang, H., Wang, W.: Model updating of a steel truss based on artificial neural networks. Appl. Mech. Mater. 121–126, 363–366 (2012)

    Google Scholar 

  22. Ukrainczyk, N., Pecur, I.B., Bolf, N.: Evaluating rebar corrosion damage in RC structures exposed to marine environment using neural network. Civ. Eng. Environ. Syst. 24(1), 15–32 (2007)

    Article  Google Scholar 

  23. Luongo, A., Contento, A.: Nonlinear elastic analysis of steel planar frames under fire loads. Comput. Struct. 150, 23–33 (2015)

    Article  Google Scholar 

  24. Cachim, P.B.: Using artificial neural networks for calculation of temperatures in timber under fire loading. Constr. Build. Mater. 25, 4175–4180 (2011)

    Google Scholar 

  25. Erdem, H.: Prediction of the moment capacity of reinforced concrete slabs in fire using artificial neural networks. Adv. Eng. Softw. 41, 270–276 (2010)

    Article  Google Scholar 

  26. Pawlak, Z.: Rough sets. Int. J. Inf. Comput. Sci. 11, 145–172 (1982)

    Article  Google Scholar 

  27. Skowron, A.: Logic, algebra and computer science. In: Rasiowa, H., Rauszer, C. (eds.) Memoriam, pp. 1–215 (1996). Bulletin of the Section of Logic

    Google Scholar 

  28. Slowinski, R., Vanderpooten, D.: A generalized definition of rough approximations based on similarity. IEEE Trans. Data Knowl. Eng., 331–336 (2000)

    Google Scholar 

  29. Pawlak, Z., Skowron, A.: Rough sets: some extensions. Inf. Sci. 177, 28–40 (2007)

    Article  MathSciNet  Google Scholar 

  30. Filiberto, Y., Bello, R., Caballero, Y., Larrua, R.: Using PSO and RST to predict the resistant capacity of connections in composite structures. In: González, J.R., Pelta, D.A., Cruz, C., Terrazas, G., Krasnogor, N. (eds.) NICSO, vol. 284, pp. 359–370. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12538-6_30

  31. Kennedy, J., Eberhart, R.C.: Particle swarm optimization. In: Proceedings of the 1995 IEEE International Conference on Neural Networks, Piscataway, New Jersey, IEEE Service Center, pp. 1942–1948 (1995)

    Google Scholar 

  32. Asuncion, A., Newman, D.: UCI machine learning repository. A study of the behaviour of several methods for balancing machine learning training data. SIGKDD Explor. 6(1), 20–29 (2007)

    Google Scholar 

  33. Anderberg, Y.: SUPER-TEMPCALC. a commercial and user friendly computer program with automatic fem-generation for temperature analysis of structures exposed to heat. In: Fire Safety Design (1991)

    Google Scholar 

  34. Silva, V.P.: Determination of the steel fire protection material thickness by an analytical process-a simple derivation. Eng. Struct. 27, 2036–2043 (2005)

    Google Scholar 

  35. Correia, A., Rodrigues, J.P., Silva, V.: A simplified calculation method for temperature evaluation of steel columns embedded in walls. Fire Mater. J. 35, 431–441 (2011)

    Article  Google Scholar 

  36. Larrua, R., Silva, V.: Thermal analysis of push-out tests at elevated temperatures. Fire Saf. J. 55, 1–14 (2013)

    Article  Google Scholar 

  37. International organization for standardization. Fire-resistance tests. Elements of building construction, Part 1.1: General requirements for fire resistance testing. ISO 834. Revision of first edition ISO (1990)

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support provided by CAPES (Coordination for the Improvement of Higher Level Personnel, Brazil) and FAPESP (São Paulo Research Foundation, Brazil). The authors would also like to thank Eng. Natoya Corneilla Thomas for her appreciated assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaima Filiberto Cabrera .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Larrua Quevedo, R., Larrua Pardo, Y., Pignatta Silva, V., Filiberto Cabrera, Y., Caballero Mota, Y. (2020). Using Numerical Modelling and Artificial Intelligence for Predicting the Degradation of the Resistance to Vertical Shear in Steel – Concrete Composite Beams Under Fire. In: Figueroa-García, J.C., Garay-Rairán, F.S., Hernández-Pérez, G.J., Díaz-Gutierrez, Y. (eds) Applied Computer Sciences in Engineering. WEA 2020. Communications in Computer and Information Science, vol 1274. Springer, Cham. https://doi.org/10.1007/978-3-030-61834-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-61834-6_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-61833-9

  • Online ISBN: 978-3-030-61834-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics