Skip to main content

Adaptive Illumination Sampling for Direct Volume Rendering

  • Conference paper
  • First Online:
Advances in Computer Graphics (CGI 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12221))

Included in the following conference series:

Abstract

Direct volume rendering is used to visualize data from sources such as tomographic imaging devices. The perception of certain structures depends very much on visual cues such as lighting and shadowing. According illumination techniques have been proposed for both surface rendering and volume rendering. However, in the case of direct volume rendering, some form of precomputation is typically required for real-time rendering. This however limits the application of the visualization. In this work we present adaptive volumetric illumination sampling, a ray-casting-based direct volume rendering method that strongly reduces the amount of necessary illumination computations without introducing any noise. By combining it with voxel cone tracing, realistic lighting including ambient occlusion and image-based lighting is facilitated in real-time. The method only requires minimal precomputation and allows for interactive transfer function updates and clipping of the visualized data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://docs.microsoft.com/en-us/windows/mixed-reality/app-quality-criteria.

  2. 2.

    2048 \(\times \) 1080 pixel.

  3. 3.

    https://klacansky.com/open-scivis-datasets/.

References

  1. Campagnolo, L.Q., Celes, W.: Interactive directional ambient occlusion and shadow computations for volume ray casting. Comput. Graph. 84, 66–76 (2019)

    Article  Google Scholar 

  2. Crassin, C., Neyret, F., Sainz, M., Green, S., Eisemann, E.: Interactive indirect illumination using voxel cone tracing. Comput. Graph. Forum 30(7), 1921–1930 (2011)

    Article  Google Scholar 

  3. Drebin, R.A., Carpenter, L., Hanrahan, P.: Volume rendering. Comput. Graph. 22(4), 65–74 (1988)

    Google Scholar 

  4. Hernell, F., Ljung, P., Ynnerman, A.: Interactive global light propagation in direct volume rendering using local piecewise integration. In: IEEE/ EG Symposium on Volume and Point-Based Graphics, pp. 105–112 (2008)

    Google Scholar 

  5. Hernell, F., Ljung, P., Ynnerman, A.: Local ambient occlusion in direct volume rendering. IEEE Trans. Vis. Comput. Graph. 16(4), 548–559 (2010)

    Article  Google Scholar 

  6. Jönsson, D., Sundén, E., Ynnerman, A., Ropinski, T.: A survey of volumetric illumination techniques for interactive volume rendering. Comput. Graph. Forum 33(1), 27–51 (2014)

    Article  Google Scholar 

  7. Klehm, O., Ritschel, T., Eisemann, E., Seidel, H.P.: Bent normals and cones in screen-space. In: VMV 2011 - Vision, Modeling and Visualization, pp. 177–182 (2011)

    Google Scholar 

  8. Kroes, T., Post, F.H., Botha, C.P.: Exposure render: an interactive photo-realistic volume rendering framework. PLoS ONE 7(7) (2012)

    Google Scholar 

  9. Kroes, T., Schut, D., Eisemann, E.: Smooth probabilistic ambient occlusion for volume rendering. In: GPU Pro, vol. 6, pp. 475–485 (2016)

    Google Scholar 

  10. Landis, H.: Production-ready global illumination. In: Course notes on RenderMan in Production, p. 15 (2002)

    Google Scholar 

  11. Langer, M.S., Bülthoff, H.H.: Depth discrimination from shading under diffuse lighting. Perception 29(6), 649–660 (2000)

    Article  Google Scholar 

  12. Lindemann, F., Ropinski, T.: About the influence of illumination models on image comprehension in direct volume rendering. IEEE Trans. Vis. Comput. Graph. 17(12), 1922–1931 (2011)

    Article  Google Scholar 

  13. Martschinke, J., Hartnagel, S., Keinert, B., Engel, K., Stamminger, M.: Adaptive temporal sampling for volumetric path tracing of medical data. Comput. Graph. Forum 38(4), 67–76 (2019)

    Article  Google Scholar 

  14. Max, N.: Optical models for direct volume rendering. IEEE Trans. Vis. Comput. Graph. 1(2), 99–108 (1995)

    Article  Google Scholar 

  15. Mittring, M.: Finding next gen: CryEngine 2. In: ACM SIGGRAPH 2007 Courses, p. 97 (2007)

    Google Scholar 

  16. Ropinski, T., Meyer-Spradow, J., Diepenbrock, S., Mensmann, J., Hinrichs, K.: Interactive volume rendering with dynamic ambient occlusion and color bleeding. Comput. Graph. Forum 27(2), 567–576 (2008)

    Article  Google Scholar 

  17. Schlegel, P., Makhinya, M., Pajarola, R.: Extinction-based shading and illumination in GPU volume ray-casting. IEEE Trans. Vis. Comput. Graph. 17(12), 1795–1802 (2011)

    Article  Google Scholar 

  18. Stewart, A.J.: Vicinity shading for enhanced perception of volumetric data. IEEE Vis. 2003, 355–362 (2003)

    Google Scholar 

  19. Zheng, L., Chaudhari, A.J., Badawi, R.D., Ma, K.L.: Using global illumination in volume visualization of rheumatoid arthritis CT data. IEEE Comput. Graph. Appl. 34(6), 16–23 (2014)

    Article  Google Scholar 

  20. Zhukov, S., Iones, A., Kronin, G.: An ambient light illumination model. In: Rendering Techniques 1998, pp. 45–55 (1998)

    Google Scholar 

Download references

Acknowledgements

We thank our partners, especially Prof. Dr. Weyhe and his team at the Pius hospital Oldenburg in the department of general and visceral surgery, who provided the “Torso” dataset. This research has been funded by the German Federal Ministry of Education and Research (BMBF) in the project VIVATOP (funding code 16SV8078).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valentin Kraft .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kraft, V., Link, F., Schenk, A., Schumann, C. (2020). Adaptive Illumination Sampling for Direct Volume Rendering. In: Magnenat-Thalmann, N., et al. Advances in Computer Graphics. CGI 2020. Lecture Notes in Computer Science(), vol 12221. Springer, Cham. https://doi.org/10.1007/978-3-030-61864-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-61864-3_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-61863-6

  • Online ISBN: 978-3-030-61864-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics