Skip to main content

Illumination Harmonization with Gray Mean Scale

  • Conference paper
  • First Online:
Advances in Computer Graphics (CGI 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12221))

Included in the following conference series:

Abstract

Illumination harmonization is an important problem for high-quality image composite. Given the source image and the target background, it aims to transform the foreground appearance that it looks in the same lighting condition as the target background. Because the ground-truth composite image is difficult to get, previous works can use only synthetic datasets, which however, provide with only artificially adjusted and limited inputs. In this paper we contribute to this problem in two aspects: 1) We introduce a semi-automatic approach to capture the ground-truth composite in real scenes, and then create a dataset that enables faithful evaluation of image harmonization methods. 2) We propose a simple yet effective harmonization method, namely the Gray Mean Scale (GMS), which models the foreground appearance transformation as channel-wise scales, and estimates the scales based on gray pixels of the source and the target background images. In experiments we evaluated the proposed method and compared it with previous methods, using both our dataset and previous synthetic datasets. A new benchmark thus is established for illumination harmonization in real environments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brox, T., Bruhn, A., Papenberg, N., Weickert, J.: High accuracy optical flow estimation based on a theory for warping. In: Pajdla, T., Matas, J. (eds.) ECCV 2004. LNCS, vol. 3024, pp. 25–36. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24673-2_3

    Chapter  Google Scholar 

  2. Bychkovsky, V., Paris, S., Chan, E., Durand, F.: Learning photographic global tonal adjustment with a database of input/output image pairs. In: CVPR, pp. 97–104. IEEE (2011)

    Google Scholar 

  3. Calonder, M., Lepetit, V., Strecha, C., Fua, P.: BRIEF: binary robust independent elementary features. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6314, pp. 778–792. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15561-1_56

    Chapter  Google Scholar 

  4. Cong, W., et al.: Image harmonization datasets: HCOCO, HAdobe5k, HFlickr, and Hday2night. arXiv preprint arXiv:1908.10526 (2019)

  5. Finlayson, G.D., Zakizadeh, R., Gijsenij, A.: The reproduction angular error for evaluating the performance of illuminant estimation algorithms. IEEE TPAMI 39(7), 1482–1488 (2016)

    Article  Google Scholar 

  6. Garon, M., Sunkavalli, K., Hadap, S., Carr, N., Lalonde, J.F.: Fast spatially-varying indoor lighting estimation. In: CVPR, pp. 6908–6917 (2019)

    Google Scholar 

  7. Lalonde, J.F., Efros, A.A.: Using color compatibility for assessing image realism. In: ICCV, pp. 1–8. IEEE (2007)

    Google Scholar 

  8. Li, Y., Liu, M.-Y., Li, X., Yang, M.-H., Kautz, J.: A closed-form solution to photorealistic image stylization. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11207, pp. 468–483. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01219-9_28

    Chapter  Google Scholar 

  9. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  10. Maloney, L.T., Wandell, B.A.: Color constancy: a method for recovering surface spectral reflectance. JOSA A 3(1), 29–33 (1986)

    Article  Google Scholar 

  11. P’erez, P., Gangnet, M., Blake, A.: Poisson image editing. In: ACM SIGGRAPH, pp. 313–318 (2003)

    Google Scholar 

  12. Qian, Y., Kamarainen, J.K., Nikkanen, J., Matas, J.: On finding gray pixels. In: CVPR, pp. 8062–8070 (2019)

    Google Scholar 

  13. Reinhard, E., Adhikhmin, M., Gooch, B., Shirley, P.: Color transfer between images. IEEE Comput. Graphics Appl. 21(5), 34–41 (2001)

    Article  Google Scholar 

  14. Russell, B.C., Torralba, A., Murphy, K.P., Freeman, W.T.: LabelMe: a database and web-based tool for image annotation. Int. J. Comput. Vision 77(1–3), 157–173 (2008). https://doi.org/10.1007/s11263-007-0090-8

    Article  Google Scholar 

  15. Shafer, S.A.: Using color to separate reflection components. Color Res. Appl. 10(4), 210–218 (1985)

    Article  Google Scholar 

  16. Shi, L.: Re-processed version of the gehler color constancy dataset of 568 images (2000). http://www.cs.sfu.ca/color/data/

  17. Tsai, Y.H., Shen, X., Lin, Z., Sunkavalli, K., Lu, X., Yang, M.H.: Deep image harmonization. In: CVPR, pp. 3789–3797 (2017)

    Google Scholar 

  18. Wu, H., Zheng, S., Zhang, J., Huang, K.: GP-GAN: towards realistic high-resolution image blending. In: ACM International Conference on Multimedia, pp. 2487–2495 (2019)

    Google Scholar 

  19. Xing, G., Liu, Y., Ling, H., Granier, X., Zhang, Y.: Automatic spatially varying illumination recovery of indoor scenes based on a single RGB-D image. IEEE TVCG, 1–14 (2018)

    Google Scholar 

  20. Xue, S., Agarwala, A., Dorsey, J., Rushmeier, H.: Understanding and improving the realism of image composites. ACM Trans. Graph. (TOG) 31(4), 84 (2012)

    Article  Google Scholar 

  21. Yu, J., Lin, Z., Yang, J., Shen, X., Lu, X., Huang, T.S.: Free-form image inpainting with gated convolution, pp. 4471–4480 (2019)

    Google Scholar 

  22. Zhu, J.Y., Krahenbuhl, P., Shechtman, E., Efros, A.A.: Learning a discriminative model for the perception of realism in composite images. In: ICCV, pp. 3943–3951 (2015)

    Google Scholar 

Download references

Acknowledgements

This work is supported by Industrial Internet Innovation and Development Project in 2019 of China, NSF of China (No. 61772318).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fan Zhong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Song, S., Zhong, F., Qin, X., Tu, C. (2020). Illumination Harmonization with Gray Mean Scale. In: Magnenat-Thalmann, N., et al. Advances in Computer Graphics. CGI 2020. Lecture Notes in Computer Science(), vol 12221. Springer, Cham. https://doi.org/10.1007/978-3-030-61864-3_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-61864-3_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-61863-6

  • Online ISBN: 978-3-030-61864-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics