Skip to main content

Pose Transfer of 2D Human Cartoon Characters

  • Conference paper
  • First Online:
Advances in Computer Graphics (CGI 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12221))

Included in the following conference series:

  • 2245 Accesses

Abstract

Pose transfer between two 2D cartoon characters provides a fast way to copy pose without complex deformation operations on the 2D shape. This paper proposes an effective method for transferring the pose of 2D human cartoon characters while preserving the character’s geometric features. We compare our method with other similar works and discuss the convergence of the results under geometric constraints. The results show that our method can effectively achieve smooth pose transfer between cartoon characters with good convergence.

Supported by The Science and Technology Planning Project of Guangzhou City (No. 201804010362) and NSF of Guangdong Province (No. 2019A1515010833).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Baran, I., Vlasic, D., Grinspun, E., Popović, J.: Semantic deformation transfer. ACM Trans. Graph. 28(3), 36:1–36:6 (2009)

    Article  Google Scholar 

  2. Bregler, C., Loeb, L., Chuang, E., Deshpande, H.: Turning to the masters: motion capturing cartoons. ACM Trans. Graph. 21(3), 399–407 (2002)

    Article  Google Scholar 

  3. Canny, J.: A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intelli. PAMI 8(6), 679–698 (1986)

    Article  Google Scholar 

  4. Farag, S., Abdelrahman, W., Creighton, D., Nahavandi, S.: Automatic deformation transfer for data-driven haptic rendering. In: 2013 11th IEEE International Conference on Industrial Informatics (INDIN), pp. 264–269 (2013)

    Google Scholar 

  5. Igarashi, T., Moscovich, T., Hughes, J.F.: As-rigid-as-possible shape manipulation. ACM Trans. Graph. 24(3), 1134–1141 (2005)

    Article  Google Scholar 

  6. Levy, B.: Laplace-beltrami eigenfunctions towards an algorithm that “understands” geometry. In: IEEE International Conference on Shape Modeling and Applications 2006 (SMI 2006), p. 13, June 2006

    Google Scholar 

  7. Ovsjanikov, M., Ben-Chen, M., Solomon, J., Butscher, A., Guibas, L.J.: Functional maps: a flexible representation of maps between shapes. ACM Trans. Graph. 31, 30:1–30:11 (2012)

    Article  Google Scholar 

  8. Reuter, M., Biasotti, S., Giorgi, D., Patanè, G., Spagnuolo, M.: Discrete Laplace-Beltrami operators for shape analysis and segmentation. Comput. Graph. 33, 381–390 (2009)

    Article  Google Scholar 

  9. Petronetto, F., Paiva, A., Helou, E.S., Stewart, D.E., Nonato, L.G.: Mesh-free discrete Laplace-Beltrami operator. Comput. Graph. Forum 32(6), 214–226 (2013)

    Article  Google Scholar 

  10. Shi, J., Tomasi, C.: Good features to track. In: 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp. 593–600, June 1994

    Google Scholar 

  11. Sumner, R.W., Popović, J.: Deformation transfer for triangle meshes. ACM Trans. Graph. 23(3), 399–405 (2004)

    Article  Google Scholar 

  12. Weng, Y., Xu, W., Wu, Y., Zhou, K., Guo, B.: 2D shape deformation using nonlinear least squares optimization. Vis. Comput. 22(9), 653–660 (2006)

    Article  Google Scholar 

  13. Yin, M., Li, G., Lu, H., Ouyang, Y., Zhang, Z., Xian, C.: Spectral pose transfer. Comput. Aided Geom. Des. 35(C), 82–94 (2015)

    Google Scholar 

  14. Zhang, T.Y., Suen, C.Y.: A fast parallel algorithm for thinning digital patterns. Commun. ACM 27, 236–239 (1984)

    Article  Google Scholar 

  15. Zhao, Y., Pan, B., Xiao, C., Peng, Q.: Dual-domain deformation transfer for triangular meshes. Comput. Animat. Virtual Worlds 23(3–4), 447–456 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Aihua Mao or Jie Luo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mao, T., Dong, W., Mao, A., Li, G., Luo, J. (2020). Pose Transfer of 2D Human Cartoon Characters. In: Magnenat-Thalmann, N., et al. Advances in Computer Graphics. CGI 2020. Lecture Notes in Computer Science(), vol 12221. Springer, Cham. https://doi.org/10.1007/978-3-030-61864-3_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-61864-3_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-61863-6

  • Online ISBN: 978-3-030-61864-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics