Skip to main content

GPU-based Grass Simulation with Accurate Blade Reconstruction

  • Conference paper
  • First Online:
Advances in Computer Graphics (CGI 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12221))

Included in the following conference series:

Abstract

Grass is a very important element of nature and it could almost be found in every natural scene. Thus grass modeling, rendering as well as simulation becomes an important task for virtual scene creation. Existing manual grass modeling and reconstruction methods have researched on generate or reconstructing plants. However, these methods do not achieve a good result for grass blades for their extremely thin shape and almost invariant surface color. Besides, current simulation and rendering methods for grasses suffer from efficiency and computation complexity problems. This paper introduces a framework that reconstructs the grass blade model from the color-enhanced depth map, simplifies the grass blade model and achieves extremely large scale grassland simulation with individual grass blade response. Our method starts with reconstructing the grass blade model. We use color information to guide the refinement of captured depth maps from cameras based on an autoregressive model. After refinement, a high-quality depth map is used to reconstruct thin blade models, which cannot be well handled by multi-view stereo methods. Then we introduce a blade simplification method according to each vertex’s movement similarity. This method takes both geometry and movement characteristics of grass into account when simplifying blade mesh. In addition, we introduce a simulation technique for extremely large grassland that achieve tile management on GPU and allow individual response for each grass blade. Our method excels at reconstructing slender grass blades as well as other similar plants, and realistic dynamic simulation for large scale grassland.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bakay, B., Lalonde, P., Heidrich, W.: Real-time animated grass. In: Eurographics 2002 (2002)

    Google Scholar 

  2. Bommes, D., et al.: Quad-mesh generation and processing: a survey, vol. 32(6), pp. 51–76 (2013)

    Google Scholar 

  3. Boulanger, K., Pattanaik, S.N., Bouatouch, K.: Rendering grass in real time with dynamic lighting. IEEE Comput. Graphics Appl. 29(1), 32–41 (2009)

    Article  Google Scholar 

  4. Bradley, D., Nowrouzezahrai, D., Beardsley, P.: Image-based reconstruction and synthesis of dense foliage. ACM Trans. Graph. (TOG) 32(4), 74 (2013)

    Article  Google Scholar 

  5. Chen, K., Johan, H.: Real-time continuum grass. In: 2010 IEEE Virtual Reality Conference (VR), pp. 227–234. IEEE (2010)

    Google Scholar 

  6. Fan, Z., Li, H., Hillesland, K., Sheng, B.: Simulation and rendering for millions of grass blades. In: Proceedings of the 19th Symposium on Interactive 3D Graphics and Games, pp. 55–60. ACM (2015)

    Google Scholar 

  7. Funkhouser, T.A., Séquin, C.H.: Adaptive display algorithm for interactive frame rates during visualization of complex virtual environments. In: Proceedings of the 20th Annual Conference on Computer graphics and Interactive Techniques, pp. 247–254. ACM (1993)

    Google Scholar 

  8. Guerraz, S., Perbet, F., Raulo, D., Faure, F., Cani, M.P.: A procedural approach to animate interactive natural sceneries. In: 16th International Conference on Computer Animation and Social Agents, pp. 73–78. IEEE (2003)

    Google Scholar 

  9. Han, D., Harada, T.: Real-time hair simulation with efficient hair style preservation. In: Proceedings of the VRIPHYS 2012, pp. 45–51 (2012)

    Google Scholar 

  10. Kajiya, J.T., Kay, T.L.: Rendering fur with three dimensional textures. ACM Siggraph Comput. Graph. 23(3), 271–280 (1989)

    Article  Google Scholar 

  11. Kamel, A., Sheng, B., Yang, P., Li, P., Shen, R., Feng, D.D.: Deep convolutional neural networks for human action recognition using depth maps and postures. IEEE Trans. Syst. Man Cybern. Syst. 49(9), 1806–1819 (2019)

    Article  Google Scholar 

  12. Karambakhsh, A., Kamel, A., Sheng, B., Li, P., Yang, P., Feng, D.D.: Deep gesture interaction for augmented anatomy learning. Int. J. Inf. Manage. 45, 328–336 (2019)

    Article  Google Scholar 

  13. Lu, P., Sheng, B., Luo, S., Jia, X., Wu, W.: Image-based non-photorealistic rendering for realtime virtual sculpting. Multimedia Tools Appl. 74(21), 9697–9714 (2014). https://doi.org/10.1007/s11042-014-2146-4

    Article  Google Scholar 

  14. Mündermann, L., MacMurchy, P., Pivovarov, J., Prusinkiewicz, P.: Modeling lobed leaves. In: Proceedings Computer Graphics International 2003, pp. 60–65. IEEE (2003)

    Google Scholar 

  15. Neyret, F.: Synthesizing verdant landscapes using volumetric textures. In: Pueyo, X., Schröder, P. (eds.) EGSR 1996. E, pp. 215–224. Springer, Vienna (1996). https://doi.org/10.1007/978-3-7091-7484-5_22

    Chapter  Google Scholar 

  16. Perlin, K.: An image synthesizer. ACM Siggraph Comput. Graph. 19(3), 287–296 (1985)

    Article  Google Scholar 

  17. Qiu, H., Chen, L., Chen, J.X., Liu, Y.: Dynamic simulation of grass field swaying in wind. J. Softw. 7(2), 431–439 (2012)

    Article  Google Scholar 

  18. Quan, L., Tan, P., Zeng, G., Yuan, L., Wang, J., Kang, S.B.: Image-based plant modeling, vol. 25(3), pp. 599–604 (2006)

    Google Scholar 

  19. Ray, N., Li, W.C., Lévy, B., Sheffer, A., Alliez, P.: Periodic global parameterization. ACM Trans. Graph. (TOG) 25(4), 1460–1485 (2006)

    Article  Google Scholar 

  20. Reeves, W.T., Blau, R.: Approximate and probabilistic algorithms for shading and rendering structured particle systems. ACM SIGGRAPH Comput. Graph. 19(3), 313–322 (1985)

    Article  Google Scholar 

  21. Shah, M.A., Kontinnen, J., Pattanaik, S.: Real-time rendering of realistic-looking grass. In: Proceedings of the 3rd International Conference on Computer Graphics and Interactive Techniques in Australasia and South East Asia, pp. 77–82. ACM (2005)

    Google Scholar 

  22. Sheng, B., Li, P., Zhang, Y., Mao, L.: GreenSea: visual soccer analysis using broad learning system. IEEE Trans. Cybern. 1–15 (2020)

    Google Scholar 

  23. Sousa, T.: Vegetation procedural animation and shading in crysis. GPU Gems 3, 373–385 (2007)

    Google Scholar 

  24. Tan, P., Zeng, G., Wang, J., Kang, S.B., Quan, L.: Image-based tree modeling. ACM Trans. Graph. 26(3), 87 (2007)

    Article  Google Scholar 

  25. Wang, C., Wang, Z., Zhou, Q., Song, C., Guan, Y., Peng, Q.: Dynamic modeling and rendering of grass wagging in wind. Comput. Anim. Virtual Worlds 16(3–4), 377–389 (2005)

    Article  Google Scholar 

  26. Wikipedia: Hausdorff distance, Wikipedia, the free encyclopedia (2015). Accessed 16 July 2015

    Google Scholar 

Download references

Acknowledgement

This work was supported in part by the National Key Research and Development Program of China under Grant 2018YFF0300903, in part by the National Natural Science Foundation of China under Grant 61872241 and Grant 61572316, and in part by the Science and Technology Commission of Shanghai Municipality under Grant 15490503200, Grant 18410750700, Grant 17411952600, and Grant 16DZ0501100.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bin Sheng or Lijuan Mao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, S. et al. (2020). GPU-based Grass Simulation with Accurate Blade Reconstruction. In: Magnenat-Thalmann, N., et al. Advances in Computer Graphics. CGI 2020. Lecture Notes in Computer Science(), vol 12221. Springer, Cham. https://doi.org/10.1007/978-3-030-61864-3_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-61864-3_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-61863-6

  • Online ISBN: 978-3-030-61864-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics