Skip to main content

Flow Visualization with Density Control

  • Conference paper
  • First Online:
Advances in Computer Graphics (CGI 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12221))

Included in the following conference series:

Abstract

In flow visualization, it remains challenging to flexibly explore local regions in 3D fields and uniformly display the structures of flow fields while preserving key features. To this end, this paper presents a novel method for streamline generation and selection for 2D and 3D flow fields via density control. Several levels of streamlines are divided by flow density. The lowest level is produced using an entropy-based seeding strategy and a grid-based filling procedure. It can generate uniform streamlines without loss of important structural information. Other levels are then generated by a streamline selection algorithm based on the average distance among streamlines. It could help users understand flow fields in a more flexible manner. For 3D fields, we further provide local density control and density control along any axis for users, which are helpful to explore the fields both globally and locally. Various experimental results validate our method.

Supported by the Natural Science Foundation of China under grant nos. 61672375 and 61170118.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhang, X., Liu, S.: Parallel SPH fluid control with dynamic details. Comput. Animat. Virt. W. 29(2), e1801 (2018)

    Article  Google Scholar 

  2. Feng, G., Liu, S.: Detail-preserving SPH fluid control with deformation constraint. Comput. Animat. Virt. W. 29(1), e1781 (2018)

    Article  Google Scholar 

  3. Zhang, X., Liu, S.: SPH fluid control with self-adaptive turbulent details. Comput. Animat. Virt. W. 26(3–4), 357–366 (2015)

    Article  Google Scholar 

  4. Liu, S., Liu, Q., Peng, Q.: Realistic simulation of mixing fluids. Vis. Comput. 27(3), 241–248 (2011)

    Article  MathSciNet  Google Scholar 

  5. Kirby, R., Marmanis, H., Laidlaw, D.H.: Visualizing multivalued data from 2D incompressible flows using concepts from painting. In: Proceeding of IEEE Visualization, pp. 333–340 (1999)

    Google Scholar 

  6. Lee, T., Mishchenko, O., Shen, H., Crawfis, R.: View point evaluation and streamline filtering for flow visualization. In: Proceeding of IEEE Pacific Visualization Symposium, pp. 83–90 (2011)

    Google Scholar 

  7. Liang, R., et al.: Visual exploration of hardi fibers with probabilistic tracking. Inf. Sci. 330, 483–494 (2016)

    Article  Google Scholar 

  8. Marchesin, S., Chen, C., Ho, C., Ma, K.: View-dependent streamlines for 3D vector fields. IEEE Trans. Vis. Comput. Graph. 16(6), 1578–1586 (2010)

    Article  Google Scholar 

  9. McLoughlin, T., Laramee, R., Peikert, R., Post, F., Chen, M.: Over two decades of integrationbased, geometric flow visualization. Comput. Graph. Forum 29(6), 1807–1829 (2010)

    Article  Google Scholar 

  10. Mebarki, A., Alliez, P., Devillers, O.: Farthest point seeding for efficient placement of streamlines. In: Proceeding of IEEE Visualization, pp. 479–486 (2005)

    Google Scholar 

  11. Rossl, C., Theisel, H.: Streamline embedding for 3D vector field exploration. IEEE Trans. Vis. Comput. Graph. 18(3), 407–420 (2012)

    Article  Google Scholar 

  12. Shannon, C.: A mathematical theory of communication. Bell Syst. Tech. J. 27(4), 379–423 (1948)

    Article  MathSciNet  Google Scholar 

  13. Song, H., Liu, S.: Dynamic fluid visualization based on multi-level density. In: Proceeding of CASA., pp. 193–196 (2016)

    Google Scholar 

  14. Tao, J., Ma, J., Wang, C., Shene, C.: A unified approach to streamline selection and viewpoint selection for 3D flow visualization. IEEE Trans. Vis. Comput. Graph. 19(3), 393–406 (2013)

    Article  Google Scholar 

  15. Theisel, H.: Opacity optimization for 3D line fields. ACM Trans. Graph. 32(4), 120:1–120:8 (2013)

    MATH  Google Scholar 

  16. Turk, G., Banks, D.: Image-guided streamline placement. In: Proceeding of ACM SIGGRAPH, pp. 453–460 (1996)

    Google Scholar 

  17. Verma, V., Kao, D., Pang, A.: A flow-guided streamline seeding strategy. In: Proceeding of IEEE Visualization, pp. 163–170 (2000)

    Google Scholar 

  18. Wu, K., Liu, Z., Zhang, S., Moorhead, R.J.: Topology-aware evenly spaced streamline placement. IEEE Trans. Vis. Comput. Graph. 16(5), 791–801 (2009)

    Google Scholar 

  19. Guo, H., et al.: Extreme-scale stochastic particle tracing for uncertain unsteady flow visualization and analysis. IEEE Trans. Vis. Comput. Graph. 25(9), 2710–2724 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shiguang Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, S., Song, H. (2020). Flow Visualization with Density Control. In: Magnenat-Thalmann, N., et al. Advances in Computer Graphics. CGI 2020. Lecture Notes in Computer Science(), vol 12221. Springer, Cham. https://doi.org/10.1007/978-3-030-61864-3_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-61864-3_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-61863-6

  • Online ISBN: 978-3-030-61864-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics