Skip to main content

DbNet: Double-Ball Model for Processing Point Clouds

  • Conference paper
  • First Online:
Advances in Computer Graphics (CGI 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12221))

Included in the following conference series:

  • 1903 Accesses

Abstract

Learning and understanding 3D point clouds with convolutional networks is challenging due to the irregular and unordered data format. Reviewing existing network models based on PointNet [13] and PointNet++ [14], they resample in different regions and explore not enough due to the irregularity and sparsity of the geometric structures. In this paper, we proposed a double-ball model embedded in the hierarchical network(DbNet) that directly extracts the features from the point clouds. This method avoids overlapping and better captures the local neighborhood geometry of each point. Double-ball model has two key steps: double-ball query and building features graph. Double-ball query avoids the resampling problem caused by the simple ball query. Building features graph takes angular features and edge features of point clouds into consideration. This method has no requirements for translation and rotation with the object. We apply it to 3D shapes classification and segmentation. And experiments on two benchmarks show that the suggested network outperforms the models based on PointNet/PointNet++ and is able to provide state of the art results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Atzmon, M., Maron, H., Lipman, Y.: Point convolutional neural networks by extension operators. ACM Trans. Graph. 37(4), 1–12 (2018)

    Article  Google Scholar 

  2. Ben-Shabat, Y., Lindenbaum, M., Fischer, A.: 3DMFV: three-dimensional point cloud classification in real-time using convolutional neural networks. IEEE Rob. Autom. Lett. 3(4), 3145–3152 (2018)

    Article  Google Scholar 

  3. Boscaini, D., Masci, J., Rodolà, E., Bronstein, M.M.: Learning shape correspondence with anisotropic convolutional neural networks (2016)

    Google Scholar 

  4. Hua, B.S., Tran, M.K., Yeung, S.K.: Pointwise convolutional neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 984–993 (2018)

    Google Scholar 

  5. Huang, H., Kalogerakis, E., Chaudhuri, S., Ceylan, D., Kim, V.G., Yumer, E.: Learning local shape descriptors from part correspondences with multiview convolutional networks. ACM Trans. Graph. (TOG) 37(1), 6 (2018)

    Google Scholar 

  6. Klokov, R., Lempitsky, V.: Escape from cells: Deep KD-networks for the recognition of 3D point cloud models (2017)

    Google Scholar 

  7. Kostrikov, I., Bruna, J., Panozzo, D., Zorin, D.: Surface networks (2017)

    Google Scholar 

  8. Le, T., Duan, Y.: PointGrid: a deep network for 3D shape understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 9204–9214 (2018)

    Google Scholar 

  9. Li, J., Chen, B.M., Lee, G.H.: So-net: Self-organizing network for point cloud analysis. In: Computer Vision and Pattern Recognition (CVPR) (2018)

    Google Scholar 

  10. Li, Y., Bu, R., Sun, M., Wu, W., Di, X., Chen, B.: PointCNN: convolution on \(\cal{X}\)-transformed points (2018)

    Google Scholar 

  11. Masci, J., Boscaini, D., Bronstein, M., Vandergheynst, P.: Geodesic convolutional neural networks on riemannian manifolds. In: Proceedings of the IEEE International Conference on Computer Vision Workshops, pp. 37–45 (2015)

    Google Scholar 

  12. Maturana, D., Scherer, S.: VoxNet: a 3D convolutional neural network for real-time object recognition. In: 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 922–928. IEEE (2015)

    Google Scholar 

  13. Qi, C.R., Su, H., Mo, K., Guibas, L.J.: PointNet: deep learning on point sets for 3D classification and segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 652–660 (2017)

    Google Scholar 

  14. Qi, C.R., Yi, L., Su, H., Guibas, L.J.: PointNet++: deep hierarchical feature learning on point sets in a metric space. In: Advances in Neural Information Processing Systems, pp. 5099–5108 (2017)

    Google Scholar 

  15. Riegler, G., Osman Ulusoy, A., Geiger, A.: OctNet: learning deep 3D representations at high resolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3577–3586 (2017)

    Google Scholar 

  16. Savva, M., et al.: Shrec16 track: largescale 3D shape retrieval from shapenet core55. In: Proceedings of the Eurographics Workshop on 3D Object Retrieval, pp. 89–98 (2016)

    Google Scholar 

  17. Shen, Y., Chen, F., Yang, Y., Dong, T.: Mining point cloud local structures by kernel correlation and graph pooling (2017)

    Google Scholar 

  18. Su, H., Maji, S., Kalogerakis, E., Learned-Miller, E.: Multi-view convolutional neural networks for 3D shape recognition. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 945–953 (2015)

    Google Scholar 

  19. Tatarchenko, M., Dosovitskiy, A., Brox, T.: Octree generating networks: efficient convolutional architectures for high-resolution 3D outputs. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2088–2096 (2017)

    Google Scholar 

  20. Wang, P.S., Liu, Y., Guo, Y.X., Sun, C.Y., Tong, X.: O-CNN: octree-based convolutional neural networks for 3D shape analysis. ACM Transactions on Graphics (TOG) 36(4), 72 (2017)

    Google Scholar 

  21. Wang, P.S., Sun, C.Y., Liu, Y., Tong, X.: Adaptive O-CNN: a patch-based deep representation of 3D shapes. In: SIGGRAPH Asia 2018 Technical Papers, p. 217. ACM (2018)

    Google Scholar 

  22. Wang, Y., Sun, Y., Liu, Z., Sarma, S.E., Bronstein, M.M., Solomon, J.M.: Dynamic graph CNN for learning on point clouds. ACM Trans. Graph. (TOG) 38(5), 1–12 (2019)

    Article  Google Scholar 

  23. Wei, L., Huang, Q., Ceylan, D., Vouga, E., Li, H.: Dense human body correspondences using convolutional networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1544–1553 (2016)

    Google Scholar 

  24. Wu, Z., et al.: 3D ShapeNets: a deep representation for volumetric shapes. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1912–1920 (2015)

    Google Scholar 

  25. Xu, H., Ming, D., Zhong, Z.: Directionally convolutional networks for 3D shape segmentation. In: IEEE International Conference on Computer Vision (2017)

    Google Scholar 

  26. Yi, L., et al.: A scalable active framework for region annotation in 3d shape collections. ACM Trans. Graph. (TOG) 35(6), 210 (2016)

    Article  Google Scholar 

  27. Yu, L., Li, X., Fu, C.W., Cohen-Or, D., Heng, P.A.: Pu-net: Point cloud upsampling network (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Gao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shen, M., Gao, Y., Qiu, J. (2020). DbNet: Double-Ball Model for Processing Point Clouds. In: Magnenat-Thalmann, N., et al. Advances in Computer Graphics. CGI 2020. Lecture Notes in Computer Science(), vol 12221. Springer, Cham. https://doi.org/10.1007/978-3-030-61864-3_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-61864-3_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-61863-6

  • Online ISBN: 978-3-030-61864-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics