Skip to main content

Modeling Implicit Communities from Geo-Tagged Event Traces Using Spatio-Temporal Point Processes

  • Conference paper
  • First Online:
Web Information Systems Engineering – WISE 2020 (WISE 2020)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12342))

Included in the following conference series:

Abstract

The location check-ins of users through various location-based services such as Foursquare, Twitter and Facebook Places, generate large traces of geo-tagged events. These event-traces often manifest in hidden (possibly overlapping) communities of users with similar interests. Inferring these implicit communities is crucial for forming user profiles for improvements in recommendation and prediction tasks. Given only time-stamped geo-tagged traces of users, can we find out these implicit communities, and characteristics of the underlying influence network? Can we use this network to improve the next location prediction task? In this paper, we focus on the problem of community detection as well as capturing the underlying diffusion process. We propose CoLAB, based on spatio-temporal point processes for information diffusion in continuous time but discrete space of locations. It simultaneously models the implicit communities of users based on their check-in activities, without making use of their social network connections. CoLAB captures the semantic features of the location, user-to-user influence along with spatial and temporal preferences of users. The latent community of users and model parameters are learnt through stochastic variational inference. To the best of our knowledge, this is the first attempt at jointly modeling the diffusion process with activity-driven implicit communities. We demonstrate CoLAB achieves upto 27% improvements in location prediction task over recent deep point-process based methods on geo-tagged event traces collected from Foursquare check-ins.

A. Likhyani and V. Gupta are contributed equally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Change history

  • 18 October 2020

    In Chapter 24, a co-author listed on the Consent to Publish form was inadvertently forgotten. This mistake has been corrected and the forgotten co-author has been added.

Notes

  1. 1.

    https://bit.ly/2BdhnnP (accessed in February 2019).

  2. 2.

    We overload the notation c to also represent a scalar categorical value in the set \(\{ 1,\ldots , V\}\).

  3. 3.

    https://en.wikipedia.org/wiki/Silhouette_(clustering).

References

  1. Alrumayyan, N., Bawazeer, S., AlJurayyad, R., Al-Razgan, M.: Analyzing user behaviors: a study of tips in foursquare. In: Alenezi, M., Qureshi, B. (eds.) 5th International Symposium on Data Mining Applications. AISC, vol. 753, pp. 153–168. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78753-4_12

    Chapter  Google Scholar 

  2. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, New York (2006)

    MATH  Google Scholar 

  3. Bouros, P., Sacharidis, D., Bikakis, N.: Regionally influential users in location-aware social networks. In: SIGSPATIAL (2014)

    Google Scholar 

  4. Cho, E., Myers, S.A., Leskovec, J.: Friendship and mobility: user movement in location-based social networks. In: SIGKDD (2011)

    Google Scholar 

  5. Cho, Y.S., Galstyan, A., Brantingham, P.J., Tita, G.: Latent self-exciting point process model for spatial-temporal networks, vol. 19 (2014)

    Google Scholar 

  6. Daley, D.J., Vere-Jones, D.: An Introduction to the Theory of Point Processes. Volume I: Elementary Theory and Methods. Probability and Its Applications, 2nd edn. Springer, New York (2003). https://doi.org/10.1007/b97277

    Book  MATH  Google Scholar 

  7. Du, N., Dai, H., Trivedi, R., Upadhyay, U., Gomez-Rodriguez, M., Song, L.: Recurrent marked temporal point processes: embedding event history to vector. In: KDD (2016)

    Google Scholar 

  8. Du, N., Farajtabar, M., Ahmed, A., Smola, A.J., Song, L.: Dirichlet-Hawkes processes with applications to clustering continuous-time document streams. In: SIGKDD (2015)

    Google Scholar 

  9. Gal, Y.: Uncertainty in deep learning. Ph.D. thesis. University of Cambridge (2016)

    Google Scholar 

  10. Gao, H., Tang, J., Hu, X., Liu, H.: Modeling temporal effects of human mobile behavior on location-based social networks. In: CIKM (2013)

    Google Scholar 

  11. Gao, H., Tang, J., Liu, H.: Exploring social-historical ties on location-based social networks. In: ICWSM (2012)

    Google Scholar 

  12. Hawkes, A.G., Oakes, D.: A cluster process representation of a self-exciting process. J. Appl. Probab. 11(3), 493–503 (1974)

    Article  MathSciNet  Google Scholar 

  13. Hu, W., Jin, P.J.: An adaptive Hawkes process formulation for estimating time-of-day zonal trip arrivals with location-based social networking check-in data. Transp. Res. Part C: Emerg. Technol. 79, 136–155 (2017)

    Article  Google Scholar 

  14. Jankowiak, M., Gomez-Rodriguez, M.: Uncovering the spatiotemporal patterns of collective social activity. In: SDM (2017)

    Google Scholar 

  15. Khorasgani, R.R., Chen, J., Zaïane, O.R.: Top leaders community detection approach in information networks. In: 4th SNA-KDD Workshop on Social Network Mining and Analysis. Citeseer (2010)

    Google Scholar 

  16. Kumpula, J.M., Kivelä, M., Kaski, K., Saramäki, J.: Sequential algorithm for fast clique percolation. Phys. Rev. E 78(2), 026109 (2008)

    Article  Google Scholar 

  17. Lewis, P.A.W., Shedler, G.S.: Simulation of nonhomogeneous poisson processes by thinning. Nav. Res. Logist. Q. 26(3), 403–413 (1979)

    Article  MathSciNet  Google Scholar 

  18. Li, G., Chen, S., Feng, J., Tan, K.L., Li, W.: Efficient location-aware influence maximization. In: SIGMOD (2014)

    Google Scholar 

  19. Li, H., Deng, K., Cui, J., Dong, Z., Ma, J., Huang, J.: Hidden community identification in location-based social network via probabilistic venue sequences. Inf. Sci. 422, 188–203 (2018)

    Article  Google Scholar 

  20. Lichman, M., Smyth, P.: Modeling human location data with mixtures of kernel densities. In: SIGKDD (2014)

    Google Scholar 

  21. Likhyani, A., Bedathur, S., Deepak, P.: LoCaTe: influence quantification for location promotion in location-based social networks. In: IJCAI (2017)

    Google Scholar 

  22. Likhyani, A., Padmanabhan, D., Bedathur, S., Mehta, S.: Inferring and exploiting categories for next location prediction. In: WWW (2015)

    Google Scholar 

  23. Liu, J., Li, Y., Ling, G., Li, R., Zheng, Z.: Community detection in location-based social networks: an entropy-based approach. In: IEEE CIT (2016)

    Google Scholar 

  24. Mikolov, T., Grave, E., Bojanowski, P., Puhrsch, C., Joulin, A.: Advances in pre-training distributed word representations. In: LREC (2018)

    Google Scholar 

  25. Noulas, A., Scellato, S., Mascolo, C., Pontil, M.: Exploiting semantic annotations for clustering geographic areas and users in location-based social networks. In: The Social Mobile Web, ICWSM Workshop (2011)

    Google Scholar 

  26. Paisley, J.W., Blei, D.M., Jordan, M.I.: Variational Bayesian inference with stochastic search. In: ICML (2012)

    Google Scholar 

  27. Prat-Pérez, A., Dominguez-Sal, D., Larriba-Pey, J.L.: High quality, scalable and parallel community detection for large real graphs. In: Proceedings of the 23rd International Conference on World Wide Web, pp. 225–236. ACM (2014)

    Google Scholar 

  28. Reinhart, A.: A review of self-exciting spatio-temporal point processes and their applications. Stat. Sci. 33, 299–318 (2018)

    MathSciNet  MATH  Google Scholar 

  29. Tran, L.Q., Farajtabar, M., Song, L., Zha, H.: NetCodec: community detection from individual activities. In: SDM (2015)

    Google Scholar 

  30. Wang, X., Zhang, Y., Zhang, W., Lin, X.: Distance-aware influence maximization in geo-social network. In: ICDE (2016)

    Google Scholar 

  31. Wang, Z., Zhang, D., Zhou, X., Yang, D., Yu, Z., Yu, Z.: Discovering and profiling overlapping communities in location-based social networks. IEEE Trans. Syst. Man Cybern.: Syst. 44(4), 499–509 (2014)

    Article  Google Scholar 

  32. Wang, Z., Zhang, D., Yang, D., Yu, Z., Zhou, X.: Detecting overlapping communities in location-based social networks. In: Aberer, K., Flache, A., Jager, W., Liu, L., Tang, J., Guéret, C. (eds.) SocInfo 2012. LNCS, vol. 7710, pp. 110–123. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-35386-4_9

    Chapter  Google Scholar 

  33. Wu, H.-H., Yeh, M.-Y.: Influential nodes in a one-wave diffusion model for location-based social networks. In: Pei, J., Tseng, V.S., Cao, L., Motoda, H., Xu, G. (eds.) PAKDD 2013. LNCS (LNAI), vol. 7819, pp. 61–72. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37456-2_6

    Chapter  Google Scholar 

  34. Yang, S.H., Zha, H.: Mixture of mutually exciting processes for viral diffusion. In: Proceedings of the 30th International Conference on International Conference on Machine Learning, ICML 2013, vol. 28, pp. II-1–II-9. JMLR.org (2013)

    Google Scholar 

  35. Yang, S.H., Zha, H.: Mixture of mutually exciting processes for viral diffusion. In: ICML, ICML 2013, pp. II-1–II-9. JMLR.org (2013). http://dl.acm.org/citation.cfm?id=3042817.3042894

  36. Ye, M., Yin, P., Lee, W.C., Lee, D.L.: Exploiting geographical influence for collaborative point-of-interest recommendation. In: SIGIR (2011)

    Google Scholar 

  37. Yuan, B., Li, H., Bertozzi, A.L., Brantingham, P.J., Porter, M.A.: Multivariate spatiotemporal Hawkes processes and network reconstruction. SIAM J. Math. Data Sci. 1, 356–382 (2019)

    Article  MathSciNet  Google Scholar 

  38. Zarezade, A., Jafarzadeh, S., Rabiee, H.R.: Recurrent spatio-temporal modeling of check-ins in location-based social networks. PLoS ONE 13(5), 1–20 (2018)

    Article  Google Scholar 

  39. Zhang, C., Shou, L., Chen, K., Chen, G., Bei, Y.: Evaluating geo-social influence in location-based social networks. In: CIKM (2012)

    Google Scholar 

  40. Zhang, C., Bütepage, J., Kjellström, H., Mandt, S.: Advances in variational inference. CoRR abs/1711.05597 (2017)

    Google Scholar 

  41. Zhang, P., Wang, X., Li, B.: On predicting twitter trend: factors and models. In: Proceedings of the 2013 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, ASONAM 2013, pp. 1427–1429. Association for Computing Machinery, New York (2013). https://doi.org/10.1145/2492517.2492576

  42. Zhao, F., Tung, A.K.: Large scale cohesive subgraphs discovery for social network visual analysis. Proc. VLDB Endow. 6(2), 85–96 (2012)

    Article  Google Scholar 

  43. Zhou, K., Zha, H., Song, L.: Learning triggering kernels for multi-dimensional Hawkes processes. In: ICML, vol. 28 (2013)

    Google Scholar 

  44. Zhu, W.Y., Peng, W.C., Chen, L.J., Zheng, K., Zhou, X.: Modeling user mobility for location promotion in location-based social networks. In: SIGKDD (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ankita Likhyani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Likhyani, A., Gupta, V., Srijith, P.K., P., D., Bedathur, S. (2020). Modeling Implicit Communities from Geo-Tagged Event Traces Using Spatio-Temporal Point Processes. In: Huang, Z., Beek, W., Wang, H., Zhou, R., Zhang, Y. (eds) Web Information Systems Engineering – WISE 2020. WISE 2020. Lecture Notes in Computer Science(), vol 12342. Springer, Cham. https://doi.org/10.1007/978-3-030-62005-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-62005-9_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-62004-2

  • Online ISBN: 978-3-030-62005-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics