Abstract
We proposed a graph anonymization method which is based on a feature learning model of Generative Adversarial Network (GAN). We used the differential privacy to ensure the privacy and take both anonymity and utility into consideration. The method consists of the following two parts: Firstly, we designed a graph feature learning method based on GAN. The method used the bias random walk strategy to sample the node sequence from graph data, and trained the GAN model. After training, the GAN generated a set of simulation sequences that are highly like the real sampled sequence. Secondly, we proposed an anonymous graph construction method based on the simulation node sequence. We calculated the number of edges in the node sequences and constructed a probability adjacency matrix. The differential privacy noise is added to get the anonymous probability adjacency matrix. Then we extract the edges from the anonymous matrix and then constructed the anonymous graph. We evaluate our methodology, showing that the model had good feature learning ability through embedding visualization and link prediction experiments, compared with other anonymous graphs. Through experiments such as metric evaluation, community detection, and de-anonymization attack, we proved that the anonymous method we proposed is better than the current mainstream anonymous method.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ji, S., Li, W., Mittal, P., et al.: Secgraph: a uniform and open-source evaluation system for graph data anonymization and de-anonymization. In: 24th USENIX Security Symposium USENIX Security 15), pp. 303–318 (2015)
Sweeney, L.: k-anonymous: a model for protecting privacy. Int. J. Uncertainty, Fuzziness Knowl. Based Syst. 10(05), 557–570 (2002)
Sun, X., Wang, H., Li, J., Zhang, Y.: Satisfying privacy requirements before data anonymization. Comput. J. 55(4), 422–437 (2012)
Li, N., Li, T., Venkatasubramanian, S.: T-closeness: privacy beyond k-anonymous and l-diversity. In: 2007 IEEE 23rd International Conference on Data Engineering, pp. 106–115. IEEE (2007)
Dwork, C.: Differential privacy. In: Encyclopedia of Cryptography and Security, pp. 338–340 (2011)
Liu, C., Mittal, P.: LinkMirage: enabling privacy-preserving analytics on social relationships. In: NDSS 2016 (2016)
Bhagat, S., Cormode, G., Krishnamurthy, B., et al.: Class-based graph anonymization for social network data. Proc. VLDB Endowment 2(1), 766–777 (2009)
Yi, X., Zhang, Y.: Privacy-preserving distributed association rule mining via semi-trusted mixer. Data Knowl. Eng. 63(2), 550–567 (2007)
Rossi, L., Musolesi, M., Torsello, A.: On the k-anonymization of time-varying and multi-layer social graphs. In: Ninth International AAAI Conference on Web and Social Media (2015)
Li, M., Sun, X., Wang, H., et al.: Privacy-aware access control with trust management in web service. World Wide Web-internet Web Inf. Syst. 14(4), 407–430 (2011)
Wang, H., Zhang, Z., Taleb, T.: Editorial: special issue on security and privacy of IoT. In: World Wide Web-Internet & Web Information Systems, pp. 1–6 (2017)
Sala, A., Zhao, X., Wilson, C., et al.: Sharing graphs using differentially private graph models. In: Proceedings of the 2011 ACM SIGCOMM Conference on Internet Measurement Conference, pp. 81–98. ACM (2011)
Gao, T., Li, F.: Sharing social networks using a novel differentially private graph model. In: 2019 16th IEEE Annual Consumer Communications & Networking Conference (CCNC), pp. 1–4. IEEE (2019)
Jorgensen, Z., Yu, T., Cormode, G.: Publishing attributed social graphs with formal privacy guarantees. In: The 2016 International Conference. ACM (2016)
Goodfellow, I., Pouget-Abadie, J., Mirza, M., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, pp. 2672–2680 (2014)
Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907 (2016)
Wang, H., Wang, J., Wang, J., et al.: Graphgan: graph representation learning with generative adversarial nets. In: Thirty-Second AAAI Conference on Artificial Intelligence (2018)
Grover, A., Leskovec, J.: node2vec: scalable feature learning for networks. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 855–864. ACM (2016)
Sundermeyer, M., Schlüter, R., Ney, H.: LSTM neural networks for language modeling. In: Interspeech, pp. 601–608 (2012)
Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein generative adversarial networks. In: International Conference on Machine Learning, pp. 214–223 (2017)
Blondel, V.D., Guillaume, J.-L., Lambiotte, R., et al.: Fast unfolding of communities in large networks. J. Stat. Mech. Theory Exp. 2008(10), P10008 (2008)
Ji, S., Gu, Q., Weng, H., et al.: De-Health: all your online health information are belong to us. arXiv preprint arXiv:1902.00717 (2019)
Acknowledgements
The work described in this paper is partially supported by the National Key Research and Development Program of China (No. 2017YFB0802204, 2016QY03D0603, 2016QY03D0601, 2017YFB0803301, 2019QY1406), the Key R&D Program of Guangdong Province (No. 2019B010136003), and the National Natural Science Foundation of China (No. 61732004, 61732022, 61672020).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Li, A., Fang, J., Jiang, Q., Zhou, B., Jia, Y. (2020). A Graph Data Privacy-Preserving Method Based on Generative Adversarial Networks. In: Huang, Z., Beek, W., Wang, H., Zhou, R., Zhang, Y. (eds) Web Information Systems Engineering – WISE 2020. WISE 2020. Lecture Notes in Computer Science(), vol 12343. Springer, Cham. https://doi.org/10.1007/978-3-030-62008-0_16
Download citation
DOI: https://doi.org/10.1007/978-3-030-62008-0_16
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-62007-3
Online ISBN: 978-3-030-62008-0
eBook Packages: Computer ScienceComputer Science (R0)