Skip to main content

Path-Based Academic Paper Recommendation

  • Conference paper
  • First Online:
Web Information Systems Engineering – WISE 2020 (WISE 2020)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12343))

Included in the following conference series:

Abstract

The overabundance of academic papers makes it difficult for researchers to find relevant or interested papers. To address the problem, existing studies have developed many approaches to recommend academic papers effectively. Most of them mainly utilize content-based filtering or citation analysis to measure similarity or relatedness of two papers and recommend relevant papers to the given query. However, these recommended papers are usually discrete from each other, i.e., the relationship between recommended papers are omitted, which disables researchers from having an sight into the time-oriented development of the topic they are interested in. To overcome the drawbacks of existing work, we propose a novel academic paper recommendation method called PAPR (Path-based Academic Paper Recommendation). Our method aims to recommend an ordered path of relevant papers, which are of great benefit in helping researchers understand the development of a specific topic. During process, we take both content and network structure into account to learn the representation of a paper. Next, the similarity between papers are measured based on the representation. The experimental results based on real data show that the proposed method outperforms the state-of-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent Dirichlet allocation. J. Mach. Learn. Res. 3, 993–1022 (2003)

    MATH  Google Scholar 

  2. Chen, T.T., Lee, M.: Research paper recommender systems on big scholarly data. In: Yoshida, K., Lee, M. (eds.) PKAW 2018. LNCS (LNAI), vol. 11016, pp. 251–260. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-97289-3_20

    Chapter  Google Scholar 

  3. Deerwester, S., Dumais, S.T., Furnas, G.W., Landauer, T.K., Harshman, R.: Indexing by latent semantic analysis. J. Am. Soc. Inform. Sci. 41(6), 391–407 (1990)

    Article  Google Scholar 

  4. Dong, Y., Chawla, N.V., Swami, A.: metapath2vec: scalable representation learning for heterogeneous networks. In: Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 135–144 (2017)

    Google Scholar 

  5. Grover, A., Leskovec, J.: node2vec: scalable feature learning for networks. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 855–864 (2016)

    Google Scholar 

  6. Hammou, B.A., Lahcen, A.A., Mouline, S.: APRA: an approximate parallel recommendation algorithm for big data. Knowl.-Based Syst. 157, 10–19 (2018)

    Article  Google Scholar 

  7. Lao, N., Cohen, W.W.: Relational retrieval using a combination of path-constrained random walks. Mach. Learn. 81(1), 53–67 (2010)

    Article  MathSciNet  Google Scholar 

  8. Liu, H., Kong, X., Bai, X., Wang, W., Bekele, T.M., Xia, F.: Context-based collaborative filtering for citation recommendation. IEEE Access 3, 1695–1703 (2015)

    Article  Google Scholar 

  9. Nascimento, C., Laender, A.H., da Silva, A.S., Gonçalves, M.A.: A source independent framework for research paper recommendation. In: Proceedings of the 11th Annual International ACM/IEEE Joint Conference on Digital Libraries, pp. 297–306 (2011)

    Google Scholar 

  10. Page, L., Brin, S., Motwani, R., Winograd, T.: The PageRank citation ranking: bringing order to the web. Proceedings of the WWW Conference, vol. 1998, pp. 161–172 (1999)

    Google Scholar 

  11. Pazzani, M.J., Billsus, D.: Content-based recommendation systems. In: Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.) The Adaptive Web. LNCS, vol. 4321, pp. 325–341. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72079-9_10

    Chapter  Google Scholar 

  12. Perozzi, B., Al-Rfou, R., Skiena, S.: DeepWalk: online learning of social representations. In: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 701–710 (2014)

    Google Scholar 

  13. Schafer, J.B., Frankowski, D., Herlocker, J., Sen, S.: Collaborative filtering recommender systems. In: Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.) The Adaptive Web. LNCS, vol. 4321, pp. 291–324. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72079-9_9

    Chapter  Google Scholar 

  14. Shan, H., Banerjee, A.: Generalized probabilistic matrix factorizations for collaborative filtering. In: 2010 IEEE International Conference on Data Mining, pp. 1025–1030. IEEE (2010)

    Google Scholar 

  15. Shi, C., Kong, X., Huang, Y., Philip, S.Y., Wu, B.: HeteSim: a general framework for relevance measure in heterogeneous networks. IEEE Trans. Knowl. Data Eng. 26(10), 2479–2492 (2014)

    Article  Google Scholar 

  16. Small, H.: Co-citation in the scientific literature: a new measure of the relationship between two documents. J. Am. Soc. Inform. Sci. 24(4), 265–269 (1973)

    Article  Google Scholar 

  17. Sun, Y., Han, J., Yan, X., Yu, P.S., Wu, T.: PathSim: meta path-based top-K similarity search in heterogeneous information networks, vol. 4, pp. 992–1003. CiteSeer (2011)

    Google Scholar 

  18. Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural networks. In: Advances in Neural Information Processing Systems, pp. 3104–3112 (2014)

    Google Scholar 

  19. Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: ArnetMiner: extraction and mining of academic social networks. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 990–998 (2008)

    Google Scholar 

  20. Tian, G., Jing, L.: Recommending scientific articles using bi-relational graph-based iterative RWR. In: Proceedings of the 7th ACM Conference on Recommender Systems, pp. 399–402 (2013)

    Google Scholar 

  21. Wang, C., Blei, D.M.: Collaborative topic modeling for recommending scientific articles. In: Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 448–456 (2011)

    Google Scholar 

  22. Zhou, D., et al.: Learning multiple graphs for document recommendations. In: Proceedings of the 17th International Conference on World Wide Web, pp. 141–150 (2008)

    Google Scholar 

Download references

Acknowledgment

This work was supported by the Major Program of the Natural Science Foundation of Jiangsu Higher Education Institutions of China under Grant No. 19KJA610002 and 19KJB520050, and the National Natural Science Foundation of China under Grant No. 61902270, a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Zhao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hua, S., Chen, W., Li, Z., Zhao, P., Zhao, L. (2020). Path-Based Academic Paper Recommendation. In: Huang, Z., Beek, W., Wang, H., Zhou, R., Zhang, Y. (eds) Web Information Systems Engineering – WISE 2020. WISE 2020. Lecture Notes in Computer Science(), vol 12343. Springer, Cham. https://doi.org/10.1007/978-3-030-62008-0_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-62008-0_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-62007-3

  • Online ISBN: 978-3-030-62008-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics