Skip to main content

Risk Monitoring Services of Discharged SARS-CoV-2 Patients

  • Conference paper
  • First Online:
Web Information Systems Engineering – WISE 2020 (WISE 2020)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12343))

Included in the following conference series:

  • 1100 Accesses

Abstract

In the latest months, the outbreak of SARS-CoV-2 has forced worldwide healthcare systems to rethink their organisation. In this landscape, particular attention has been devoted to discharged patients. Remote monitoring on patients’ health status is used, through dedicated web platforms and apps, to check home rehabilitation progress and, at the same time, promptly notify the arise of anomalies. Nevertheless, the variety of patients and the large volume of collected data call for models, tools and methods for data representation and exploration, in order to focus on relevant groups of patients only. Given our previous research efforts in the Big Data exploration field, we designed a Risk Monitoring Services ecosystem, devoted to support doctors (e.g., medical researchers, clinicians, analysts) in the analysis of data collected through app by: (i) identifying groups of SARS-CoV-2 discharged patients, built according to features such as sex, age, co-morbidities, prior therapies; (ii) monitoring the health status of patients, by extracting snapshots of patients’ health parameters measurements, evolving over time, and comparing them with baseline or reference values within the same patients group; (iii) promptly notifying doctors when some measurements diverge from reference values for a group of patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bagozi, A., Bianchini, D., De Antonellis, V., Garda, M., Marini, A.: A relevance-based approach for big data exploration. Future Gener. Comput. Syst. 101, 51–69 (2019)

    Article  Google Scholar 

  2. Banerjee, A., Chakraborty, C., Kumar, A., Biswas, D.: Emerging trends in IoT and big data analytics for biomedical and health care technologies. In: Handbook of Data Science Approaches for Biomedical Engineering, pp. 121–152 (2020)

    Google Scholar 

  3. Bochicchio, M., Cuzzocrea, A., Vaira, L.: A big data analytics framework for supporting multidimensional mining over big healthcare data. In: Proceedings of 15th IEEE International Conference on Machine Learning and Applications (ICMLA 2016), Anaheim, California, USA, pp. 508–513 (2016)

    Google Scholar 

  4. da Cruz, H.F., Gebhardt, M., Becher, F., Schapranow, M.P.: Interactive data exploration supporting elderly care planning. In: Proceedings of 10th International Conference on eHealth, Telemedicine, and Social Medicine (eTELEMED 2018), Rome, Italy, p. 68 (2018)

    Google Scholar 

  5. Domova, V., Sander-Tavallaey, S.: Visualization for quality healthcare: patient flow exploration. In: 2019 IEEE International Conference on Big Data (Big Data 2019), Los Angeles, California, USA, pp. 1072–1079 (2019)

    Google Scholar 

  6. Golfarelli, M., Rizzi, S.: Data Warehouse Design: Modern Principles and Methodologies. McGraw-Hill, New York (2009)

    Google Scholar 

  7. Malasinghe, L.P., Ramzan, N., Dahal, K.: Remote patient monitoring: a comprehensive study. J. Ambient Intell. Humaniz. Comput. 10(1), 57–76 (2017). https://doi.org/10.1007/s12652-017-0598-x

    Article  Google Scholar 

  8. Opaliński, A., et al.: Medical data exploration based on the heterogeneous data sources aggregation system. In: Proceedings of 14th Federated Conference on Computer Science and Information Systems (FedCSIS 2019), Leipzig, Germany, pp. 591–597 (2019)

    Google Scholar 

  9. Rao, A.R., Clarke, D.: An open-source framework for the interactive exploration of Big Data: applications in understanding health care. In: 2017 International Joint Conference on Neural Networks (IJCNN 2017), Anchorage, Alaska, USA, pp. 1641–1648 (2017)

    Google Scholar 

  10. Shah, G., Shah, A., Shah, M.: Panacea of challenges in real-world application of big data analytics in healthcare sector. J. Data Inf. Manag. 1(3), 107–116 (2019). https://doi.org/10.1007/s42488-019-00010-1

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Devis Bianchini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bagozi, A., Bianchini, D., De Antonellis, V., Garda, M. (2020). Risk Monitoring Services of Discharged SARS-CoV-2 Patients. In: Huang, Z., Beek, W., Wang, H., Zhou, R., Zhang, Y. (eds) Web Information Systems Engineering – WISE 2020. WISE 2020. Lecture Notes in Computer Science(), vol 12343. Springer, Cham. https://doi.org/10.1007/978-3-030-62008-0_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-62008-0_40

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-62007-3

  • Online ISBN: 978-3-030-62008-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics