Skip to main content

Robot Planning with Mental Models of Co-present Humans

  • Conference paper
  • First Online:
Social Robotics (ICSR 2020)

Abstract

Robots are increasingly embedded in human societies where they encounter human collaborators, potential adversaries, and even uninvolved by-standers. Such robots must plan to accomplish joint goals with teammates while avoiding interference from competitors, possibly utilizing bystanders to advance the robot’s goals. We propose a planning framework for robot task and action planners that can cope with collaborative, competitive, and non-involved human agents at the same time by using mental models of human agents. By querying these models, the robot can plan for the effects of future human actions and can plan robot actions to influence what the human will do, even when influencing them through explicit communication is not possible. We implement the framework in a planner that does not assume that human agents share goals with, or will cooperate with, the robot. Instead, it can handle the diverse relations that can emerge from interactions between the robot’s goals and capacities, the task environment, and the human behavior predicted by the planner’s models. We report results from an evaluation where a teleoperated robot executes a planner-generated policy to influence the behavior of human participants. Since the robot is not capable of performing some of the actions necessary to achieve its goal, the robot instead tries to cause the human to perform those actions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anderson, J.R.: Rules of the Mind. Psychology Press, Hove (2014)

    Book  Google Scholar 

  2. Ben Larbi, R., Konieczny, S., Marquis, P.: Extending classical planning to the multi-agent case: a game-theoretic approach. In: Mellouli, K. (ed.) ECSQARU 2007. LNCS (LNAI), vol. 4724, pp. 731–742. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-75256-1_64

    Chapter  MATH  Google Scholar 

  3. Bolander, T.: A gentle introduction to epistemic planning: the DEL approach. Electron. Proc. Theoret. Comput. Sci. 243, 1–22 (2017). https://doi.org/10.4204/eptcs.243.1

    Article  MathSciNet  Google Scholar 

  4. Bowling, M., Jensen, R., Veloso, M.: Multi-agent planning in the presence of multiple goals, Chap. 10, pp. 301–325. Wiley (2006). https://doi.org/10.1002/0471781266.ch10. https://onlinelibrary.wiley.com/doi/abs/10.1002/0471781266.ch10

  5. Brafman, R.I., Domshlak, C.: From one to many: planning for loosely coupled multi-agent systems. In: ICAPS, pp. 28–35 (2008)

    Google Scholar 

  6. Brafman, R.I., Domshlak, C., Engel, Y., Tennenholtz, M.: Planning games. In: IJCAI, pp. 73–78 (2009)

    Google Scholar 

  7. Buzing, P., ter Mors, A., Valk, J., Witteveen, C.: Coordinating self-interested planning agents. Auton. Agents Multi-Agent Syst. 12(2), 199–218 (2006). https://doi.org/10.1007/s10458-005-6104-4

    Article  Google Scholar 

  8. Chakraborti, T., Kambhampati, S.: Algorithms for the greater good! On mental modeling and acceptable symbiosis in human-AI collaboration. CoRR abs/1801.09854 (2018). http://arxiv.org/abs/1801.09854

  9. Chakraborti, T., Kambhampati, S., Scheutz, M., Zhang, Y.: AI challenges in human-robot cognitive teaming. arXiv preprint arXiv:1707.04775 (2017)

  10. Chen, M., Nikolaidis, S., Soh, H., Hsu, D., Srinivasa, S.: Planning with trust for human-robot collaboration. In: Proceedings of the 2018 ACM/IEEE International Conference on Human-Robot Interaction, HRI 2018, pp. 307–315. ACM, New York (2018). https://doi.org/10.1145/3171221.3171264. https://doi.acm/10.1145/3171221.3171264

  11. Chidambaram, V., Chiang, Y., Mutlu, B.: Designing persuasive robots: how robots might persuade people using vocal and nonverbal cues. In: 2012 7th ACM/IEEE International Conference on Human-Robot Interaction (HRI), pp. 293–300 (2012). https://doi.org/10.1145/2157689.2157798

  12. Cirillo, M., Karlsson, L., Saffiotti, A.: Human-aware task planning: an application to mobile robots. ACM Trans. Intell. Syst. Technol. 1(2), 15:1–15:26 (2010). https://doi.org/10.1145/1869397.1869404. https://doi.acm/10.1145/1869397.1869404

  13. Dragan, A.D.: Robot planning with mathematical models of human state and action (2017)

    Google Scholar 

  14. Ghallab, M., Nau, D., Traverso, P.: Automated Planning and Acting. Cambridge University Press, Cambridge (2016). https://doi.org/10.1017/CBO9781139583923

    Book  MATH  Google Scholar 

  15. Görür, O.C., Rosman, B., Sivrikaya, F., Albayrak, S.: Social cobots: anticipatory decision-making for collaborative robots incorporating unexpected human behaviors. In: Proceedings of the 2018 ACM/IEEE International Conference on Human-Robot Interaction, HRI 2018, pp. 398–406. ACM, New York (2018). https://doi.org/10.1145/3171221.3171256. https://doi.acm/10.1145/3171221.3171256

  16. Gray, J., Breazeal, C.: Manipulating mental states through physical action. Int. J. Soc. Robot. 6(3), 315–327 (2014). https://doi.org/10.1007/s12369-014-0234-2

    Article  Google Scholar 

  17. Kulkarni, A., Srivastava, S., Kambhampati, S.: Implicit robot-human communication in adversarial and collaborative environments. CoRR abs/1802.06137 (2018). http://arxiv.org/abs/1802.06137

  18. Laird, J.E.: The Soar Cognitive Architecture. MIT Press, Cambridge (2012)

    Book  Google Scholar 

  19. Milliez, G., Lallement, R., Fiore, M., Alami, R.: Using human knowledge awareness to adapt collaborative plan generation, explanation and monitoring. In: 2016 11th ACM/IEEE International Conference on Human-Robot Interaction (HRI), pp. 43–50 (2016). https://doi.org/10.1109/HRI.2016.7451732

  20. Muise, C., et al.: Planning over multi-agent epistemic states: a classical planning approach. In: Proceedings of AAAI 2012, The Twenty-Sixth AAAI Conference on Artificial Intelligence (2015). https://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9974

  21. Muise, C., Felli, P., Miller, T., Pearce, A.R., Sonenberg, L.: Leveraging FOND planning technology to solve multi-agent planning problems. In: Workshop on Distributed and Multi-Agent Planning (DMAP 2015) (2015). http://www.haz.ca/papers/muise-dmap15-mapasfond.pdf

  22. Nikolaidis, S., Hsu, D., Srinivasa, S.: Human-robot mutual adaptation in collaborative tasks: models and experiments. Int. J. Robot. Res. 36(5–7), 618–634 (2017). https://doi.org/10.1177/0278364917690593

    Article  Google Scholar 

  23. Nikolaidis, S., Kwon, M., Forlizzi, J., Srinivasa, S.: Planning with verbal communication for human-robot collaboration. ACM Trans. Hum.-Robot Interact. 7(3), 22:1–22:21 (2018). https://doi.org/10.1145/3203305

    Article  Google Scholar 

  24. Nissim, R., Brafman, R.I., Domshlak, C.: A general, fully distributed multi-agent planning algorithm. In: Proceedings of the 9th International Conference on Autonomous Agents and Multiagent Systems: Volume 1, AAMAS 2010, vol. 1, pp. 1323–1330. International Foundation for Autonomous Agents and Multiagent Systems, Richland, SC (2010). http://dl.acm.org/citation.cfm?id=1838206.1838379

  25. Prunera, J.J.M.: Non-cooperative games for self-interested planning agents. Ph.D. thesis, Universitat Politècnica de València (2017). https://doi.org/10.4995/Thesis/10251/90417

  26. Scheutz, M., DeLoach, S., Adams, J.: A framework for developing and using shared mental models in human-agent teams. J. Cogn. Eng. Decis. Mak. 11(3), 203–224 (2017)

    Article  Google Scholar 

  27. Talamadupula, K., Briggs, G., Chakraborti, T., Scheutz, M., Kambhampati, S.: Coordination in human-robot teams using mental modeling and plan recognition. In: 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2014), pp. 2957–2962. IEEE (2014)

    Google Scholar 

  28. Torreño, A., Onaindia, E., Komenda, A., Stolba, M.: Cooperative multi-agent planning: a survey. CoRR abs/1711.09057 (2017). http://arxiv.org/abs/1711.09057

  29. de Weerdt, M., Clement, B.: Introduction to planning in multiagent systems. Multiagent Grid Syst. 5, 345–355 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

This work was in part funded by AFOSR grant number FA9550-18-1-0465 and NASA grant number C17-2D00-TU.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Buckingham .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Buckingham, D., Chita-Tegmark, M., Scheutz, M. (2020). Robot Planning with Mental Models of Co-present Humans. In: Wagner, A.R., et al. Social Robotics. ICSR 2020. Lecture Notes in Computer Science(), vol 12483. Springer, Cham. https://doi.org/10.1007/978-3-030-62056-1_47

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-62056-1_47

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-62055-4

  • Online ISBN: 978-3-030-62056-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics