Skip to main content

An Anomalous Traffic Detection Approach for the Private Network Based on Self-learning Model

  • Conference paper
  • First Online:
Machine Learning for Cyber Security (ML4CS 2020)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 12486))

Included in the following conference series:

  • 1145 Accesses

Abstract

Although being isolated from the external network, the private network is still faced with some security threats, such as violations communications, malware attacks, and illegal operations. It is an attractive approach to recognize these security threats by discovering the underlying anomalous traffic. By studying the anomalous traffic detection technologies, an anomalous traffic detection approach is developed by capturing and analyzing the network packets, detecting the anomaly traffic that occurs in the network, and then detects anomalous behaviors of the network timely. In order to enhance its effectiveness and efficiency, a self-learning model is proposed and deployed in the detection approach. Finally, we conduct necessary evaluations about the proposed approach. The test results show that the approach can reach a good effect for detecting the unknown anomalous traffic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hasan, M.S., ElShakankiry, A., Dean, T., Zulkernine, M.: Intrusion detection in a private network by satisfying constraints. In: 2016 14th Annual Conference on Privacy, Security and Trust. Auckland, New Zealand, 12–14 December 2016. https://doi.org/10.1109/PST.2016.7906997

  2. Han, W., Xue, J., Yan, H.: Detecting anomalous traffic in the controlled network based on cross entropy and support vector machine. IET Inf. Secur. 13(2), 109–116 (2019). https://doi.org/10.1049/iet-ifs.2018.5186

    Article  Google Scholar 

  3. Vijayasarathy, R., Raghavan, S.V., Ravindran, B.: A system approach to network modeling for DDoS detection using a Naìve Bayesian classifier. In: Proceedings of 2011 Third International Conference on Communication Systems and Networks, Bangalore, India, 4–8 January 2011. https://doi.org/10.1109/COMSNETS.2011.5716474

  4. Swarnkar, M., Hubballi, N.: OCPAD: one class Naive Bayes classifier for payload based anomaly detection. Expert Syst. Appl. 64, 330–339 (2016)

    Article  Google Scholar 

  5. Li, W., Li, Q.X.: Using Naive Bayes with AdaBoost to enhance network anomaly intrusion detection. In: Proceedings of International Conference on Intelligent Networks & Intelligent Systems, pp. 486–489. IEEE Computer Society (2010). https://doi.org/10.1109/ICINIS.2010.133

  6. Ahirwar, D.K., Saxena, S.K., Sisodia, M.S.: Anomaly detection by Naive Bayes & RBF network. Int. J. Adv. Res. Comput. Sci. Electron. Eng. 1(1), 14–18 (2012)

    Google Scholar 

  7. Peng, T., Tang, Z.: A small scale forecasting algorithm for network traffic based on relevant local least squares support vector machine regression model. Appl. Math. Inf. Sci. 9(2), 653–659 (2015). https://doi.org/10.12785/amis/092L41

    Article  Google Scholar 

  8. Catania, C.A., Bromberg, F., Garino, C.G.: An autonomous labeling approach to support vector machines algorithms for network traffic anomaly detection. Expert Syst. Appl. 39(2), 1822–1829 (2010)

    Article  Google Scholar 

  9. Ji, S.Y., Choi, S., Dong, H.J.: Designing a two-level monitoring method to detect network anomalous behaviors. In: Proceedings of the 2014 IEEE 15th International Conference on Information Reuse and Integration, Redwood City, CA, USA, 13–15 August 2014. IEEE (2014). https://doi.org/10.1109/IRI.2014.7051958

  10. Li, S., Yun, X., Zhang, Y.: A model of trojan communication behavior detection based on hierarchical clustering technique. Comput. Res. Dev. (s2), 9–16 (2012)

    Google Scholar 

  11. Yu, H., Wang, J.: Analysis of network traffic based on IP address clustering. J. Ocean Univ. China Nat. Sci. Ed. (s1), 196–199 (2008)

    Google Scholar 

  12. Wang, X., Liang, X.: Network traffic prediction model based on BPSO-RBFNN. Comput. Appl. Softw. (9), 102–105 (2014)

    Google Scholar 

  13. Ravale, U., Marathe, N., Padiya, P.: Feature selection based hybrid anomaly intrusion detection system using k means and RBF kernel function. Procedia Comput. Sci. 45(39), 428–435 (2015)

    Article  Google Scholar 

  14. Lykov, S., Asakura, Y.: Anomalous traffic pattern detection in large urban areas: tensor-based approach with continuum modeling of traffic flow. Int. J. Intell. Transp. Syst. Res. 18(1), 13–21 (2018). https://doi.org/10.1007/s13177-018-0167-5

    Article  Google Scholar 

  15. Hou, E., Yılmaz, Y., Hero, A.O.: Anomaly detection in partially observed traffic networks. IEEE Trans. Signal Process. 67(6), 1461–1476 (2019). https://doi.org/10.1109/TSP.2019.2892026

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Key Research and Development Program of China under Grant 2016QY06X1205.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weijie Han .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Han, W., Xue, J., Zhang, F., Zhang, Y. (2020). An Anomalous Traffic Detection Approach for the Private Network Based on Self-learning Model. In: Chen, X., Yan, H., Yan, Q., Zhang, X. (eds) Machine Learning for Cyber Security. ML4CS 2020. Lecture Notes in Computer Science(), vol 12486. Springer, Cham. https://doi.org/10.1007/978-3-030-62223-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-62223-7_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-62222-0

  • Online ISBN: 978-3-030-62223-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics