Abstract
Machine learning, especially deep learning, is a hot research field in academia, and it is revolutionizing industry. However, the privacy-preserving problems are not solved. In this paper, we investigate the privacy-preserving technology in machine learning application. We first introduce the models in privacy-preserving machine learning protocols, and then we give an overview of the main privacy-preserving machine learning technologies. At last, we analyze the existing problems.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Zhang, L., Cui, Y., Liu, J.: Application of machine learning in cyberspace security research. Chinese J. Comput. 41, 1–34 (2018)
Zhang, Y., Dong, Y., Liu, C.: Status, trends and prospects of deep learning applied to cyberspace security. Comput. Res. Dev. 55, 1117 (2018)
Shokri, R., Shmatikov, V.: Privacy-preserving deep learning. In: Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security, pp. 1310–1321. ACM (2015)
Chase, M., Gilad-Bachrach, R., Laine, K., Lauter, K., Rindal, P.: Private Collaborative Neural Network Learning. IACR Crypt. ePrint Archive 2017, 762 (2017)
Dahl, M.: Private image analysis with MPC: training CNNs on sensitive data using SPDZ (2017).https://mortendahl.github.io/2017/09/19/private-image-analysis-with-mpc/
Mohassel, P., Zhang, Y.: SecureML: A System for Scalable Privacy-Preserving Machine Learning. IACR Crypt. ePrint Archive 2017, 396 (2017)
Gilad-Bachrach, R., Dowlin, N., Laine, K., Lauter, K., Naehrig, M., Wernsing, J.: CryptoNets: applying neural networks to encrypted data with high throughput and accuracy. In: International Conference on Machine Learning, pp. 201–210 (2016)
Barni, M., Orlandi, C., Piva, A.: A privacy-preserving protocol for neural-network-based computation. In: Proceedings of the 8th Workshop on Multimedia and Security, pp. 146–151. ACM (2006)
Orlandi, C., Piva, A., Barni, M.: Oblivious neural network computing via homomorphic encryption. EURASIP J. Inf. Secur. 2007(1), 1–11 (2007). https://doi.org/10.1155/2007/37343
Rouhani, B.D., Riazi, M.S., Koushanfar, F.: Deepsecure: Scalable provably-secure deep learning. CoRR.abs/1705.08963 (2017)
Riazi, M.S., et. al.: Chameleon: A hybrid secure computation framework for machine learning applications. Cryptology ePrint Archive, Report 2017/1164 (2017). https://eprint.iacr.org/2017/1164
Juvekar, C., Vaikuntanathan, V., Chandrakasan, A.: GAZELLE: A Low Latency Framework for Secure Neural Network Inference. Cryptology ePrint Archive, Report 2018/073 (2018). https://eprint.iacr.org/2018/073
Liu, J., Juuti, M., Lu, Y., Asokan, N.: Oblivious neural network predictions via minionn transformations. In: Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, CCS 2017, Dallas, TX, USA, October 30 − November 03, pp. 619–631 (2017)
Bourse, F., Minelli, M., Minihold, M., Paillier, P.: Fast homomorphic evaluation of deep discretized neural network. IACR Cryptology ePrint Archive, 2017:1114 (2017). https://eprint.iacr.org/2017/1114
Laur, S., Lipmaa, H., Mielik¨ainen, T.: Cryptographically private support vector machines. In: Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 618–624. ACM (2006)
Rahulamathavan, Y., Phan, R.C.-W., Veluru, S., Cumanan, K., Rajarajan, M.: Privacy-preserving multi-class support vector machine for outsourcing the data classification in cloud. IEEE Trans. Dependable Secure Comput. 11(5), 467–479 (2014)
Makri, E., Rotaru, D., Smart, N.P., Vercauteren, F.: PICS: Private Image Classification with SVM. IACR Cryptology ePrint Archive 2017/1190 (2017)
Barnett, A., Santokhi, J., Simpson, M., Smart, N.P., Stainton-Bygrave, C., Vivek, S., Waller, A.: Image classification using non-linear support vector machines on encrypted data. IACR Crypt. ePrint Archive 2017, 857 (2017)
Lin, K.-P., Chen, M.-S.: Privacy-preserving outsourcing support vector machines with random transformation. In: Proceedings of the 16th ACM SIGKDD international conference on Knowledge discovery and data mining, pp. 363–372. ACM (2010)
Lin, K.-P., Chen, M.-S.: On the design and analysis of the privacy-preserving SVM classifier. IEEE Trans. Knowl. Data Eng. 23(11), 1704–1717 (2011)
Vaidya, J., Yu, H., Jiang, X.: Privacy-preserving SVM classification. Knowl. Inf. Syst. 14(2), 161–178 (2008)
Teo, S.G., Han, S., Lee, V.C.: Privacy preserving support vector machine using non-linear kernels on hadoop mahout. In: 2013 IEEE 16th International Conference on Computational Science and Engineering (CSE), pp. 941–948. IEEE (2013)
Graepel, T., Lauter, K., Naehrig, M.: ML Confidential: Machine learning on encrypted data. In: Kwon, T., Lee, M.-K., Kwon, D. (eds.) ICISC 2012. LNCS, vol. 7839, pp. 1–21. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37682-5_1
Aslett, L.J., Esperanca, P.M., Holmes, C.C.: Encrypted Statistical Machine Learning: New Privacy Preserving Methods. arXiv preprint arXiv:1508.06845 (2015)
Bost, R., Popa, R.A., Tu, S., Goldwasser, S.: Machine learning classification over encrypted data. In: NDSS (2015)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Yang, R. (2020). Survey on Privacy-Preserving Machine Learning Protocols. In: Chen, X., Yan, H., Yan, Q., Zhang, X. (eds) Machine Learning for Cyber Security. ML4CS 2020. Lecture Notes in Computer Science(), vol 12486. Springer, Cham. https://doi.org/10.1007/978-3-030-62223-7_36
Download citation
DOI: https://doi.org/10.1007/978-3-030-62223-7_36
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-62222-0
Online ISBN: 978-3-030-62223-7
eBook Packages: Computer ScienceComputer Science (R0)