Skip to main content

\(\mathtt{LODsyndesis}_{IE}\): Entity Extraction from Text and Enrichment Using Hundreds of Linked Datasets

  • Conference paper
  • First Online:
The Semantic Web: ESWC 2020 Satellite Events (ESWC 2020)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12124))

Included in the following conference series:

  • 908 Accesses

Abstract

We shall demonstrate \(\mathtt{LODsyndesis}_{IE}\), which is a research prototype that offers Entity Extraction from text and Entity Enrichment for the extracted entities, using several Linked Datasets. \(\mathtt{LODsyndesis}_{IE}\) exploits widely used Named Entity Extraction and Disambiguation tools (i.e., DBpedia Spotlight, WAT and Stanford CoreNLP) for identifying the entities of a given text, and enriches each identified entity with hyperlinks to LODsyndesis, which offers various services for millions of entities by leveraging hundreds of Linked Datasets. \(\mathtt{LODsyndesis}_{IE}\) brings several benefits to the entity extraction task: the user can a) annotate the entities of a given text by selecting different entity recognition tools, b) retrieve all the URIs and facts of each recognized entity from multiple datasets, and c) discover the K most relevant datasets (e.g., datasets containing the most facts) for each entity. The demo is available at https://demos.isl.ics.forth.gr/LODsyndesisIE/.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Al-Moslmi, T., Ocaña, M.G., Opdahl, A.L., Veres, C.: Named entity extraction for knowledge graphs: a literature overview. IEEE Access 8, 32862–32881 (2020)

    Article  Google Scholar 

  2. Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z.: DBpedia: a nucleus for a web of open data. In: Aberer, K., et al. (eds.) ASWC/ISWC -2007. LNCS, vol. 4825, pp. 722–735. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-76298-0_52

    Chapter  Google Scholar 

  3. Beek, W., Raad, J., Wielemaker, J., van Harmelen, F.: sameAs.cc: the closure of 500M owl:sameAs statements. In: Gangemi, A., et al. (eds.) ESWC 2018. LNCS, vol. 10843, pp. 65–80. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93417-4_5

    Chapter  Google Scholar 

  4. Diefenbach, D., Singh, K., Maret, P.: WDAqua-core1: a question answering service for RDF knowledge bases. In: Companion Proceedings of the The Web Conference 2018, pp. 1087–1091 (2018)

    Google Scholar 

  5. Dimitrakis, E., Sgontzos, K., Mountantonakis, M., Tzitzikas, Y.: Enabling efficient question answering over hundreds of linked datasets. In: Flouris, G., Laurent, D., Plexousakis, D., Spyratos, N., Tanaka, Y. (eds.) ISIP 2019. CCIS, vol. 1197, pp. 3–17. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-44900-1_1

    Chapter  Google Scholar 

  6. Dimitrakis, E., Sgontzos, K., Tzitzikas, Y.: A survey on question answering systems over linked data and documents. J. Intell. Inf. Syst. 55(2), 233–259 (2019). https://doi.org/10.1007/s10844-019-00584-7

    Article  Google Scholar 

  7. Guha, R.V., Brickley, D., Macbeth, S.: Schema. org: evolution of structured data on the web. Commun. ACM 59(2), 44–51 (2016)

    Article  Google Scholar 

  8. Manning, C.D., Surdeanu, M. , Bauer, J., Finkel, J.R., Bethard, S., McClosky, D.: The stanford CoreNLP natural language processing toolkit. In: Proceedings of 52nd Annual Meeting of the Association for Computational Linguistics: System Demonstrations, pp. 55–60 (2014)

    Google Scholar 

  9. Mendes, P.N., Jakob, M., García-Silva, A., Bizer, C.: DBpedia spotlight: shedding light on the web of documents. In: SEMANTiCS, pp. 1–8. ACM (2011)

    Google Scholar 

  10. Mountantonakis, M., Tzitzikas, Y.: Large scale semantic integration of linked data: a survey. ACM Comput. Surv. (CSUR) 52(5), 103 (2019)

    Google Scholar 

  11. Mountantonakis, M., Tzitzikas, Y.: Content-based union and complement metrics for dataset search over RDF knowledge graphs. J. Data Inf. Qual. (JDIQ) 12(2), 1–31 (2020)

    Article  Google Scholar 

  12. Piccinno, F., Ferragina, P.: From TagME to WAT: a new entity annotator. In: Proceedings of Workshop on Entity Recognition & Disambiguation, pp. 55–62 (2014)

    Google Scholar 

  13. Röder, M., Usbeck, R., Ngonga Ngomo, A.-C.: Gerbil-benchmarking named entity recognition and linking consistently. Semant. Web 9(5), 605–625 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

The research work was supported by the Hellenic Foundation for Research and Innovation (HFRI) and the General Secretariat for Research and Technology (GSRT), under the HFRI PhD Fellowship grant (GA. No. 166).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yannis Tzitzikas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mountantonakis, M., Tzitzikas, Y. (2020). \(\mathtt{LODsyndesis}_{IE}\): Entity Extraction from Text and Enrichment Using Hundreds of Linked Datasets. In: Harth, A., et al. The Semantic Web: ESWC 2020 Satellite Events. ESWC 2020. Lecture Notes in Computer Science(), vol 12124. Springer, Cham. https://doi.org/10.1007/978-3-030-62327-2_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-62327-2_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-62326-5

  • Online ISBN: 978-3-030-62327-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics