Skip to main content

Enabling Web-Scale Knowledge Graphs Querying

  • Conference paper
  • First Online:
The Semantic Web: ESWC 2020 Satellite Events (ESWC 2020)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12124))

Included in the following conference series:

  • 824 Accesses

Abstract

Knowledge Graphs (KGs) have become an asset for integrating and consuming data from heterogeneous sources. KGs have an influence on several domains such as health-care, manufacturing, transportation and energy. Over the years, the Web of Data has grown significantly. Today, answering complex queries on open KGs is practically impossible due to the SPARQL endpoints availability problem caused by well-known scalability and load balancing issues when hosting Web-size data for concurrent clients. To maintain reliable and responsive open Knowledge Graph query services, several solutions have been proposed: while SPARQL endpoints enforce restrictions on server usage such as imposing limited query execution time or providing partial query results, alternative solutions such as Triple Pattern Fragments (TPF) attempts to tackle the problem of availability by pushing query processing workload to the client-side but suffer from the unnecessary transfer of irrelevant data on complex queries as a result of the large intermediate results. The aim of our research is to develop a new generation of smart clients and servers to balance the load between servers and clients, with the best possible query execution performance, and at the same time reducing data transfer volume, by combining SPARQL endpoints, TPF and shipping compressed KG partitions. The proposed solution shall, on the server-side, offer a suitable query execution service according to the current status of the server workload. On the client-side, we plan research on novel client-side caching mechanisms on the basis of compressed and queryable KG partitions that can be distributed in a modular fashion. In addition, we plan to leverage query logs to optimize the number and the distribution of partitions as well as distributing the query load across a network of collaborative clients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://developers.google.com/knowledge-graph.

  2. 2.

    https://www.microsoft.com/en-us/research/project/knowledge-mining-api/.

  3. 3.

    https://developers.facebook.com/docs/graph-api/.

  4. 4.

    https://www.stardog.com/.

  5. 5.

    https://wiki.dbpedia.org/public-sparql-endpoint.

  6. 6.

    https://ai.wu.ac.at/smartkg.

References

  1. Acosta, M., Vidal, M.-E., Sure-Vetter, Y.: Diefficiency metrics: measuring the continuous efficiency of query processing approaches. In: d’Amato, C., et al. (eds.) ISWC 2017. LNCS, vol. 10588, pp. 3–19. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68204-4_1

    Chapter  Google Scholar 

  2. Aluç, G., Hartig, O., Özsu, M.T., Daudjee, K.: Diversified stress testing of RDF data management systems. In: Mika, P., et al. (eds.) ISWC 2014. LNCS, vol. 8796, pp. 197–212. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11964-9_13

    Chapter  Google Scholar 

  3. Buil-Aranda, C., Hogan, A., Umbrich, J., Vandenbussche, P.-Y.: SPARQL web-querying infrastructure: ready for action? In: Alani, H., et al. (eds.) ISWC 2013. LNCS, vol. 8219, pp. 277–293. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-41338-4_18

    Chapter  Google Scholar 

  4. Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z.: DBpedia: a nucleus for a web of open data. In: Aberer, K., et al. (eds.) ASWC/ISWC -2007. LNCS, vol. 4825, pp. 722–735. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-76298-0_52

    Chapter  Google Scholar 

  5. Azzam, A., Fernández, J.D., Acosta, M., Beno, M., Polleres, A.: SMART-KG: hybrid shipping for SPARQL querying on the web. In: Proceedings of The Web Conference 2020, WWW 2020, pp. 984–994. Association for Computing Machinery, New York (2020)

    Google Scholar 

  6. Belleau, F., Nolin, M.A., Tourigny, N., Rigault, P., Morissette, J.: Bio2RDF: towards a mashup to build bioinformatics knowledge system. J. Biomed. Inform. 41, 706–716 (2008)

    Article  Google Scholar 

  7. Bizer, C., Heath, T., Berners-Lee, T.: Linked data - the story so far. Int. J. Semantic Web Inf. Syst. 5(3), 1–22 (2009)

    Article  Google Scholar 

  8. Bizer, C., Schultz, A.: The Berlin SPARQL benchmark. Int. J. Semant. Web Inf. Syst. 5, 1–24 (2009)

    Google Scholar 

  9. Carlson, A., Betteridge, J., Kisiel, B., Settles, B., Hruschka Jr., E.R., Mitchell, T.M.: Toward an architecture for never-ending language learning. In: AAAI (2010)

    Google Scholar 

  10. Dong, X.L., et al.: Knowledge vault: a web-scale approach to probabilistic knowledge fusion. In: The 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2014, New York, NY, USA, 24–27 August 2014, pp. 601–610 (2014). Evgeniy Gabrilovich Wilko Horn Ni Lao Kevin Murphy Thomas Strohmann Shaohua Sun Wei Zhang Geremy Heitz

    Google Scholar 

  11. Erling, O., Mikhailov, I.: RDF support in the Virtuoso DBMS. In: Pellegrini, T., Auer, S., Tochtermann, K., Schaffert, S. (eds.) Networked Knowledge - Networked Media, pp. 7–24. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02184-8_2

    Chapter  Google Scholar 

  12. Feigenbaum, L. , Williams, G.T., Clark, K.G., Torres., E.: SPARQL 1.1 protocol. Recommendation, W3C, March 2013

    Google Scholar 

  13. Gubichev, A., Neumann, T.: Exploiting the query structure for efficient join ordering in SPARQL queries. In: EDBT, vol. 14, pp. 439–450 (2014)

    Google Scholar 

  14. Haas, L.M., Kossmann, D.E., Wimmers, L., Yang, J.: Optimizing queries across diverse data sources. In: VLDB (1997)

    Google Scholar 

  15. Harbi, R., Abdelaziz, I., Kalnis, P., Mamoulis, N., Ebrahim, Y., Sahli, M.: Accelerating SPARQL queries by exploiting hash-based locality and adaptive partitioning. VLDB J. 25(3), 355–380 (2016)

    Article  Google Scholar 

  16. Harti, O.: SQUIN: a traversal based query execution system for the web of linked data. In: Proceedings of SIGMOD, pp. 1081–1084. ACM (2013)

    Google Scholar 

  17. Hartig, O., Bizer, C., Freytag, J.C.: Executing SPARQL queries over the web of linked data. In: Proceedings of ISWC, pp. 293–309 (2009)

    Google Scholar 

  18. Hartig, O., Buil-Aranda, C.: Bindings-restricted triple pattern fragments. In: Debruyne, C., et al. (eds.) OTM 2016. LNCS, vol. 10033, pp. 762–779. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48472-3_48

    Chapter  Google Scholar 

  19. Hoffart, J., Suchanek, F.M., Berberich, K., Weikum, G.: YAGO2: a spatially and temporally enhanced knowledge base from Wikipedia. Artif. Intel. 194, 28–61 (2013). Artificial Intelligence, Wikipedia and Semi-Structured Resources

    Article  MathSciNet  MATH  Google Scholar 

  20. Lehmann, J., et al.: DBpedia - a large-scale, multilingual knowledge base extracted from Wikipedia. Semant. Web 6(2), 167–195 (2015)

    Article  Google Scholar 

  21. Minier, T., Skaf-Molli, H., Molli, P.: SaGe: web preemption for public SPARQL query services. In: The Web Conference, pp. 1268–1278. ACM (2019)

    Google Scholar 

  22. Neumann, T., Moerkotte, G.: Characteristic sets: accurate cardinality estimation for RDF queries with multiple joins. In: Proceedings of ICDE, pp. 984–994. IEEE (2011)

    Google Scholar 

  23. Noy, N., Gao, Y., Jain, A., Narayanan, A., Patterson, A., Taylor, J.: Industry-scale knowledge graphs: lessons and challenges. Commun. ACM 62(8), 36–43 (2019)

    Article  Google Scholar 

  24. Owens, A., Seaborne, A., Gibbins, N., Schraefel, M.C.: Clustered TDB: a clustered triple store for Jena. Project report (2008)

    Google Scholar 

  25. Ronzhin, S., et al.: Kadaster knowledge graph: beyond the fifth star of open data. Information 10, 310 (2019)

    Article  Google Scholar 

  26. Saleem, M., Mehmood, Q., Ngonga Ngomo, A.-C.: Feasible: a feature-based SPARQL benchmark generation framework. In: International Semantic Web Conference (ISWC) (2015)

    Google Scholar 

  27. Shen, F., Lee, Y.: Knowledge discovery from biomedical ontologies in cross domains. PLoS ONE 11, e0160005 (2016)

    Article  Google Scholar 

  28. Verborgh, R., et al.: Triple pattern fragments: a low-cost knowledge graph interface for the Web. J. Web Semant. 37–388, 184–206 (2016)

    Article  Google Scholar 

  29. Vrandečić, D., Krötzsch, M.: Wikidata: a free collaborative knowledgebase. Commun. ACM 57, 78–85 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

This work has been supported by the European Union Horizon 2020 research and innovation programme under grant 731601 (SPECIAL) and by the Austrian Research Promotion Agency (FFG) grant no. 861213 (CitySPIN). I thank my doctoral supervisor Prof. Dr. Axel Polleres and my co-authors Dr. Javier D. Fernández and Dr. Maribel Acosta and Martin Beno for their helpful discussions, comments and feedback.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amr Azzam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Azzam, A. (2020). Enabling Web-Scale Knowledge Graphs Querying. In: Harth, A., et al. The Semantic Web: ESWC 2020 Satellite Events. ESWC 2020. Lecture Notes in Computer Science(), vol 12124. Springer, Cham. https://doi.org/10.1007/978-3-030-62327-2_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-62327-2_38

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-62326-5

  • Online ISBN: 978-3-030-62327-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics