Skip to main content

Intelligent Fuzzy Optimized Control for Energy Extraction in Large Wind Turbines

  • Conference paper
  • First Online:
Intelligent Data Engineering and Automated Learning – IDEAL 2020 (IDEAL 2020)

Abstract

In this paper an intelligent controller is designed to obtain the maximum power of a large floating offshore wind turbine. The control of these turbines is more complex due to the strong loads they are subjected to and the uncertainty that comes from the environment, mainly wind and waves, and from its non-linear dynamics. In this case, the control goal is to maximize the output power of the wind turbine by controlling the rotor speed. An incremental PD-type fuzzy controller has been implemented; it generates the pitch angle reference. The performance of this control scheme on the NREL 5 MW floating offshore wind turbine has been compared with the internal control that is provided within the FAST software. Results are encouraging, showing that the intelligent control strategy is able to produce more energy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aguilar, R.M., Torres, J.M., Martin, C.A.: Automatic learning for the system identification. A case study in the prediction of power generation in a wind farm. Revista Iberoamericana de Automática e Informática Industrial 16(1), 114–127 (2019)

    Google Scholar 

  2. Gomes, I.L.R., Melício, R., Mendes, V.M.F., Pousinho, H.M.I.: Wind power with energy storage arbitrage in day-ahead market by a stochastic MILP approach. Log. J. IGPL 28(4), 570–582 (2020)

    Google Scholar 

  3. Mikati, M., Santos, M., Armenta, C.: Electric grid dependence on the configuration of a small-scale wind and solar power hybrid system. Renew. Energy 57, 587–593 (2013)

    Article  Google Scholar 

  4. Mikati, M., Santos, M., Armenta, C.: Modelado y simulación de un sistema conjunto de energía solar y eólica para analizar su dependencia de la red eléctrica. Revista Iberoamericana de Automática e Informática Industrial 9(3), 267–281 (2012)

    Article  Google Scholar 

  5. Rubio, P.M., Quijano, J.F., López, P.Z., et al.: Intelligent control for improving the efficiency of a hybrid semi- submersible platform with wind turbine and wave energy converters. Revista Iberoamericana de Automática e Informática Industrial 16(4), 480–491 (2019)

    Article  Google Scholar 

  6. Tomás-Rodríguez, M., Santos, M.: Modelado y control de turbinas eólicas marinas flotantes. Revista Iberoamericana de Automática e Informática Industrial 16(4), 381–390 (2019)

    Article  Google Scholar 

  7. Li, Z., Adeli, H.: Control methodologies for vibration control of smart civil and mechanical structures. Expert Syst. 35(6), e12354 (2018)

    Article  Google Scholar 

  8. Kim, C., Muljadi, E., Chung, C.C.: Coordinated control of wind turbine and energy storage system for reducing wind power fluctuation. Energies 11(1), 52 (2018)

    Article  Google Scholar 

  9. Quiles, E., Garciia, E., Cervera, J., Vives, J.: Development of a test bench for wind turbine condition monitoring and fault diagnosis. IEEE Lat. Am. Trans. 17(06), 907–913 (2019)

    Article  Google Scholar 

  10. Santos, M.: Un enfoque aplicado del control inteligente. Revista Iberoamericana de Automática e Informática Industrial RIAI 8(4), 283–296 (2011)

    Article  Google Scholar 

  11. Galvani, P.A., Sun, F., Turkoglu, K.: Aerodynamic modeling of NREL 5-MW wind Turbine for nonlinear control system design: a case study based on real-time nonlinear receding horizon control. Aerospace 3(3), 27 (2016)

    Article  Google Scholar 

  12. Acho, L.: A proportional plus a hysteretic term control design: a throttle experimental emulation to wind turbines pitch control. Energies 12(10), 1961 (2019)

    Article  Google Scholar 

  13. Nasiri, M., Mobayen, S., Zhu, Q.M.: Super-twisting sliding mode control for gearless PMSG-based wind turbine. Complexity 2019 (2019). Article ID 6141607

    Google Scholar 

  14. Kim, D., Lee, D.: Hierarchical fault-tolerant control using model predictive control for wind turbine pitch actuator faults. Energies 12(16), 3097 (2019)

    Article  Google Scholar 

  15. Civelek, Z.: Optimization of fuzzy logic (Takagi-Sugeno) blade pitch angle controller in wind turbines by genetic algorithm. Eng. Sci. Technol. Int. J. 23(1), 1–9 (2020)

    Google Scholar 

  16. Rocha, M.M., da Silva, J.P., De Sena, F.D.C.B.: Simulation of a fuzzy control applied to a variable speed wind system connected to the electrical network. IEEE Lat. Am. Trans. 16(2), 521–526 (2018)

    Article  Google Scholar 

  17. Jonkman, J., Butterfield, S., Musial, W., Scott, G.: Definition of a 5-MW reference wind turbine for offshore system development (No. NREL/TP-500-38060). National Renewable Energy Lab. (NREL), Golden, CO (United States) (2009)

    Google Scholar 

  18. Civelek, Z., Lüy, M., Çam, E., Mamur, H.: A new fuzzy logic proportional controller approach applied to individual pitch angle for wind turbine load mitigation. Renew. Energy 111, 708–717 (2017)

    Article  Google Scholar 

  19. Santos, M., De la Cruz, J.M., Dormido, S., De Madrid, A.P.: Between fuzzy-PID and PID-conventional controllers: a good choice. In: Proceedings of North American Fuzzy Information Processing, pp. 123–127. IEEE (1996)

    Google Scholar 

  20. NREL FAST. https://www.nrel.gov/wind/nwtc.html. Accessed 20 Aug 2020

  21. Santos, M., Dormido, S., De La Cruz, J.M.: Fuzzy-PID controllers vs. fuzzy-PI controllers. In: Proceedings of 5th International Fuzzy Systems, vol. 3, pp. 1598–1604. IEEE (1996)

    Google Scholar 

Download references

Acknowledgments

This work was partially supported by the Spanish Ministry of Science, Innovation and Universities MCI/AEI/FEDER Project number RTI2018-094902-B-C21.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matilde Santos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Serrano-Barreto, C., Santos, M. (2020). Intelligent Fuzzy Optimized Control for Energy Extraction in Large Wind Turbines. In: Analide, C., Novais, P., Camacho, D., Yin, H. (eds) Intelligent Data Engineering and Automated Learning – IDEAL 2020. IDEAL 2020. Lecture Notes in Computer Science(), vol 12490. Springer, Cham. https://doi.org/10.1007/978-3-030-62365-4_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-62365-4_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-62364-7

  • Online ISBN: 978-3-030-62365-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics