Skip to main content

A Comparative Analysis Between Crisp and Fuzzy Data Clustering Approaches for Traditional and Bioinspired Algorithms

  • Conference paper
  • First Online:
Intelligent Data Engineering and Automated Learning – IDEAL 2020 (IDEAL 2020)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12490))

  • 1493 Accesses

Abstract

Partitional data clustering algorithms produce a relationship matrix between data and clusters, named membership matrix, which clusters can be treated as mutually exclusive (crisp) or not (fuzzy), according to data clustering approach used. Moreover, a partition obtained by a crisp algorithm can be fuzzified and so, the relationship between data and clusters be relaxed, such as in fuzzy data clustering approach. However, algorithms have your own heuristic and, iteratively, the behavior of a crisp algorithm can be different of that respective fuzzy version and, in addition, fuzzifying a crisp partition can produce different result in relation to crisp and fuzzy clustering algorithms. Therefore, this paper proposes a comparative analysis among results produced by fuzzy data clustering algorithms and their respective crisp versions and fuzzified partitions. The proposal is identify whether a fuzzy clustering algorithm can be replaced by its respective crisp with fuzzified partition, in terms of result quality. The experiments were performed to two traditional partitional algorithms and two bioinspired algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.gnu.org/software/octave/.

  2. 2.

    https://archive.ics.uci.edu/ml/datasets.html.

References

  1. Han, J., Kamber, M.: Data Mining: Concepts and techniques, 2nd edn. Elsevier, San Francisco (2006)

    MATH  Google Scholar 

  2. Rawashdeh, M., Ralescu, A.: Crisp and fuzzy cluster validity: generalized intra-inter silhouette index. In: 2012 Annual Meeting of the North American Fuzzy Information Processing Society (NAFIPS), Berkeley, pp. 1–6. IEEE (2012)

    Google Scholar 

  3. Shafeeq, A., Hareesha, K.S.: Dynamic clustering of data with modified k-means algorithm. In: International Information and Computer Networks (ICICN), Singapore, vol. 27, pp. 221–225 (2012)

    Google Scholar 

  4. Li, H., He, H., Wen, Y.: Dynamic particle swarm optimization and k-means clustering algorithm for image segmentation. Optik 126(24), 4817–4822 (2015)

    Article  Google Scholar 

  5. de Oliveira, J.V., Pedrycz, W.: Advances in Fuzzy Clustering and Its Applications. Wiley, New York (2007)

    Book  Google Scholar 

  6. Jain, A.K., Law, M.H.C.: Data clustering: a user’s dilemma. In: Pal, S.K., Bandyopadhyay, S., Biswas, S. (eds.) PReMI 2005. LNCS, vol. 3776, pp. 1–10. Springer, Heidelberg (2005). https://doi.org/10.1007/11590316_1

    Chapter  Google Scholar 

  7. Jain, A.K.: Data clustering: 50 years beyond k-means. Pattern Recognit. Lett. 31(8), 651–666 (2010)

    Article  Google Scholar 

  8. Carmichael, J.W., George, J.A., Julius, R.S.: Finding natural clusters. Syst. Biol. 17(2), 144–150 (1968)

    Article  Google Scholar 

  9. Nagy, G.: State of the art in pattern recognition. Proc. IEEE 56(5), 836–863 (1968)

    Article  Google Scholar 

  10. Ruspini, E.H., Bezdek, J.C., Keller, J.M.: Fuzzy clustering: a historical perspective. IEEE Comput. Intell. Mag. 14(1), 45–55 (2019)

    Article  Google Scholar 

  11. Jain, A.K., Murty, M.N., Flynn, P.J.: Data clustering: a review. ACM Comput. Surv. (CSUR) 31(3), 264–323 (1999)

    Article  Google Scholar 

  12. Ahmadyfard, A., Modares, H.: Combining PSO and k-means to enhance data clustering. In: 2008 International Symposium on Telecommunications, Tehran, pp. 688–691. IEEE (2008)

    Google Scholar 

  13. da Cruz, D.P.F., Maia, R.D., Szabo, A., de Castro, L.N.: A bee-inspired algorithm for optimal data clustering. In: IEEE Congress on Evolutionary Computation (CEC), Cancun, pp. 3140–3147. IEEE (2013)

    Google Scholar 

  14. Szabo, A., Delgado, M.R., de Castro, L.N.: A particle swarm clustering algorithm with fuzzy weighted step sizes. In: Jackowski, K., Burduk, R., Walkowiak, K., Woźniak, M., Yin, H. (eds.) IDEAL 2015. LNCS, vol. 9375, pp. 87–95. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24834-9_11

    Chapter  Google Scholar 

  15. Szabo, A., de Castro, L.N., Delgado, M.R.: A constructive particle swarm algorithm for fuzzy clustering. In: Yin, H., Costa, J.A.F., Barreto, G. (eds.) IDEAL 2012. LNCS, vol. 7435, pp. 390–398. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32639-4_48

    Chapter  Google Scholar 

  16. Nisha, P.J.K.: A survey of clustering techniques and algorithms. In: 2015 2nd International Conference on Computing for Sustainable Global Development (INDIACom), New Delhi, pp. 304–307. IEEE (2015)

    Google Scholar 

  17. MacQueen, J.B.: Some Methods for classification and analysis of multivariate observations. In: 1967 5th Symposium on Mathematical Statistics and Probability, pp. 281–297. University of California Press (1967)

    Google Scholar 

  18. Bezdek, J.: Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum Press, New York (1981)

    Book  Google Scholar 

  19. Cox, E.: Fuzzy Modeling and Genetic Algorithms for Data Mining and Exploration. Morgan Kaufmann, San Francisco (2005)

    MATH  Google Scholar 

  20. de Castro, L.N.: Fundamentals of Natural Computing: Basic Concepts, Algorithms, and Applications. Chapman & Hall/CRC, Boca Raton (2006)

    Google Scholar 

  21. de Oliveira, J.V., Szabo, A., de Castro, L.N.: Particle swarm clustering in clustering ensembles: exploiting pruning and alignment free consensus. Appl. Soft Comput. 55, 141–153 (2017)

    Article  Google Scholar 

  22. Rana, S., Jasola, S., Kumar, R.: A review on particle swarm optimization algorithms and their applications to data clustering. Artif. Intell. Rev. 35, 211–222 (2011)

    Article  Google Scholar 

  23. Sengupta, S., Basak, S., Peters, R.A.: Data clustering using a hybrid of fuzzy c-means and quantum-behaved particle swarm optimization. In: 2018 IEEE 8th Annual Computing and Communication Workshop and Conference (CCWC), Las Vegas, pp. 137–142. IEEE (2018)

    Google Scholar 

  24. Kennedy, J., Eberhart, R.C.: Particle swarm optimization. In: IEEE International Conference on Neural Networks, Perth, pp. 1942–1948. IEEE (1995)

    Google Scholar 

  25. Cohen, S.C.M., de Castro, L.N.: Data clustering with particle swarms. In: 2006 IEEE International Conference on Evolutionary Computation, Vancouver, pp. 1792–1798. IEEE (2006)

    Google Scholar 

  26. Szabo, A., de Castro, L.N., Delgado, M.R.: The proposal of a fuzzy clustering algorithm based on particle swarm. In: 2011 Third World Congress on Nature and Biologically Inspired Computing, Salamanca, pp. 459–465. IEEE (2011)

    Google Scholar 

  27. Xie, X.L., Beni, G.: A validity measure for fuzzy clustering. IEEE Trans. Pattern Anal. Mach. Intell. 13(8), 841–847 (1991)

    Article  Google Scholar 

  28. Derrac, J., Garcia, S., Molina, D., Herrera, F.: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evol. Comput. 1(1), 3–18 (2011)

    Article  Google Scholar 

  29. Shapiro, S.S., Wilk, M.B.: An analysis of variance test for normality. Biometrika 52, 591–611 (1965)

    Article  MathSciNet  Google Scholar 

  30. Wilcoxon, F.: Individual comparisons by ranking methods. Biometrics Bull. 1(6), 80–83 (1945)

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Federal University of Grande Dourados (UFGD) for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandre Szabo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Coradini, A., Szabo, A. (2020). A Comparative Analysis Between Crisp and Fuzzy Data Clustering Approaches for Traditional and Bioinspired Algorithms. In: Analide, C., Novais, P., Camacho, D., Yin, H. (eds) Intelligent Data Engineering and Automated Learning – IDEAL 2020. IDEAL 2020. Lecture Notes in Computer Science(), vol 12490. Springer, Cham. https://doi.org/10.1007/978-3-030-62365-4_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-62365-4_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-62364-7

  • Online ISBN: 978-3-030-62365-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics