Skip to main content

Extending SPARQL with Similarity Joins

  • Conference paper
  • First Online:
The Semantic Web – ISWC 2020 (ISWC 2020)

Abstract

We propose techniques that support the efficient computation of multidimensional similarity joins in an RDF/SPARQL setting, where similarity in an RDF graph is measured with respect to a set of attributes selected in the SPARQL query. While similarity joins have been studied in other contexts, RDF graphs present unique challenges. We discuss how a similarity join operator can be included in the SPARQL language, and investigate ways in which it can be implemented and optimised. We devise experiments to compare three similarity join algorithms over two datasets. Our results reveal that our techniques outperform DBSimJoin: a PostgreSQL extension that supports similarity joins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We use prefixes as defined in http://prefix.cc.

  2. 2.

    http://jena.apache.org.

  3. 3.

    https://javacc.github.io/javacc/.

  4. 4.

    We use the library provided by Chambers at https://github.com/jchambers/jvptree.

  5. 5.

    We use the Java implementation provided by Stavrev at https://gitlab.com/jadro-ai-public/flann-java-port.git.

  6. 6.

    We use a truthy dump available in February, 2020.

References

  1. Battle, R., Kolas, D.: Enabling the geospatial Semantic Web with Parliament and GeoSPARQL. Semantic Web 3(4), 355–370 (2012)

    Article  Google Scholar 

  2. Belleau, F., Nolin, M.A., Tourigny, N., Rigault, P., Morissette, J.: Bio2RDF: towards a mashup to build bioinformatics knowledge systems. J. Biomed. Inform. 41(5), 706–716 (2008)

    Article  Google Scholar 

  3. Böhm, C., Braunmüller, B., Krebs, F., Kriegel, H.P.: Epsilon grid order: an algorithm for the similarity join on massive high-dimensional data. SIGMOD Rec. 30, 379–388 (2001)

    Article  Google Scholar 

  4. Böhm, C., Krebs, F.: Supporting KDD applications by the k-nearest neighbor join. In: Mařík, V., Retschitzegger, W., Štěpánková, O. (eds.) DEXA 2003. LNCS, vol. 2736, pp. 504–516. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45227-0_50

    Chapter  Google Scholar 

  5. Dittrich, J.P., Seeger, B.: GESS: a scalable similarity-join algorithm for mining large data sets in high dimensional spaces. In: Special Interest Group on Knowledge Discovery in Data (SIGKDD), pp. 47–56. ACM (2001)

    Google Scholar 

  6. Dohnal, V., Gennaro, C., Savino, P., Zezula, P.: D-index: distance searching index for metric data sets. Multimedia Tools Appl. 21(1), 9–33 (2003)

    Article  Google Scholar 

  7. Ferrada, S., Bustos, B., Hogan, A.: IMGpedia: a linked dataset with content-based analysis of wikimedia images. In: d’Amato, C., et al. (eds.) ISWC 2017. LNCS, vol. 10588, pp. 84–93. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68204-4_8

    Chapter  Google Scholar 

  8. Galkin, M., Vidal, M.-E., Auer, S.: Towards a multi-way similarity join operator. In: Kirikova, M., Nørvåg, K., Papadopoulos, G.A., Gamper, J., Wrembel, R., Darmont, J., Rizzi, S. (eds.) ADBIS 2017. CCIS, vol. 767, pp. 267–274. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67162-8_26

    Chapter  Google Scholar 

  9. Giacinto, G.: A nearest-neighbor approach to relevance feedback in content based image retrieval. In: International Conference on Image and Video Retrieval (CIVR), pp. 456–463. ACM, New York (2007)

    Google Scholar 

  10. Guerraoui, R., Kermarrec, A., Ruas, O., Taïani, F.: Fingerprinting big data: the case of KNN graph construction. In: International Conference on Data Engineering (ICDE), pp. 1738–1741, April 2019

    Google Scholar 

  11. Harris, S., Seaborne, A., Prud’hommeaux, E.: SPARQL 1.1 Query Language. W3C Recommendation, March 2013. https://www.w3.org/TR/sparql11-query/

  12. Hogan, A., Mellotte, M., Powell, G., Stampouli, D.: Towards fuzzy query-relaxation for RDF. In: Extended Semantic Web Conference (ESWC), pp. 687–702 (2012)

    Google Scholar 

  13. Jacox, E.H., Samet, H.: Metric space similarity joins. ACM TODS 33(2), 7 (2008)

    Article  Google Scholar 

  14. Kiefer, C., Bernstein, A., Stocker, M.: The fundamentals of iSPARQL: a virtual triple approach for similarity-based semantic web tasks. In: Aberer, K., et al. (eds.) ASWC/ISWC -2007. LNCS, vol. 4825, pp. 295–309. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-76298-0_22

    Chapter  Google Scholar 

  15. Li, H., Zhang, X., Wang, S.: Reduce pruning cost to accelerate multimedia kNN search over MBRs based index structures. In: 2011 Third International Conference on Multimedia Information Networking and Security, pp. 55–59, November 2011

    Google Scholar 

  16. Muja, M., Lowe, D.G.: Fast approximate nearest neighbors with automatic algorithm configuration. In: International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISSAPP), pp. 331–340. INSTICC Press (2009)

    Google Scholar 

  17. Navarro, G.: Analyzing metric space indexes: what for? In: International Conference on Similarity Search and Applications (SISAP), pp. 3–10. IEEE Computer Society, Washington, DC (2009)

    Google Scholar 

  18. Neumann, T., Moerkotte, G.: Characteristic sets: accurate cardinality estimation for RDF queries with multiple joins. In: International Conference on Data Engineering (ICDE), pp. 984–994 (2011)

    Google Scholar 

  19. Ngomo, A.N., Auer, S.: LIMES - a time-efficient approach for large-scale link discovery on the web of data. In: International Joint Conference on Artificial Intelligence (IJCAI), pp. 2312–2317 (2011)

    Google Scholar 

  20. Oldakowski, R., Bizer, C.: SemMF: a framework for calculating semantic similarity of objects represented as RDF graphs. In: Poster at ISWC (2005)

    Google Scholar 

  21. Paredes, R., Reyes, N.: Solving similarity joins and range queries in metric spaces with the list of twin clusters. J. Discrete Algorithms 7(1), 18–35 (2009)

    Article  MathSciNet  Google Scholar 

  22. Pérez, J., Arenas, M., Gutiérrez, C.: Semantics and complexity of SPARQL. ACM TODS 34(3), 16:1–16:45 (2009)

    Article  Google Scholar 

  23. Petrova, A., Sherkhonov, E., Cuenca Grau, B., Horrocks, I.: Entity comparison in RDF graphs. In: d’Amato, C., et al. (eds.) ISWC 2017. LNCS, vol. 10587, pp. 526–541. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68288-4_31

    Chapter  Google Scholar 

  24. Sherif, M.A., Ngomo, A.N.: A systematic survey of point set distance measures for link discovery. Semantic Web 9(5), 589–604 (2018)

    Article  Google Scholar 

  25. Silva, Y.N., Pearson, S.S., Cheney, J.A.: Database similarity join for metric spaces. In: Brisaboa, N., Pedreira, O., Zezula, P. (eds.) SISAP 2013. LNCS, vol. 8199, pp. 266–279. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-41062-8_27

    Chapter  Google Scholar 

  26. Volz, J., Bizer, C., Gaedke, M., Kobilarov, G.: Discovering and maintaining links on the web of data. In: Bernstein, A., et al. (eds.) ISWC 2009. LNCS, vol. 5823, pp. 650–665. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04930-9_41

    Chapter  Google Scholar 

  27. Vrandečić, D., Krötzsch, M.: Wikidata: a free collaborative knowledgebase. Comm. ACM 57, 78–85 (2014)

    Article  Google Scholar 

  28. Yianilos, P.N.: Data structures and algorithms for nearest neighbor search in general metric spaces. In: Symposium on Discrete Algorithms (SODA), vol. 93, pp. 311–321 (1993)

    Google Scholar 

  29. Zhai, X., Huang, L., Xiao, Z.: Geo-spatial query based on extended SPARQL. In: International Conference on Geoinformatics (GEOINFORMATICS), pp. 1–4. IEEE (2010)

    Google Scholar 

Download references

Acknowledgements

This work was partly funded by the Millennium Institute for Foundational Research on Data, by FONDECYT Grant No. 1181896 and by CONICYT Grant No. 21170616. We thank the reviewers for their feedback.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastián Ferrada .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ferrada, S., Bustos, B., Hogan, A. (2020). Extending SPARQL with Similarity Joins. In: Pan, J.Z., et al. The Semantic Web – ISWC 2020. ISWC 2020. Lecture Notes in Computer Science(), vol 12506. Springer, Cham. https://doi.org/10.1007/978-3-030-62419-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-62419-4_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-62418-7

  • Online ISBN: 978-3-030-62419-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics