Skip to main content

ExCut: Explainable Embedding-Based Clustering over Knowledge Graphs

  • Conference paper
  • First Online:
The Semantic Web – ISWC 2020 (ISWC 2020)

Abstract

Clustering entities over knowledge graphs (KGs) is an asset for explorative search and knowledge discovery. KG embeddings have been intensively investigated, mostly for KG completion, and have potential also for entity clustering. However, embeddings are latent and do not convey user-interpretable labels for clusters. This work presents ExCut, a novel approach that combines KG embeddings with rule mining methods, to compute informative clusters of entities along with comprehensible explanations. The explanations are in the form of concise combinations of entity relations. ExCut jointly enhances the quality of entity clusters and their explanations, in an iterative manner that interleaves the learning of embeddings and rules. Experiments on real-world KGs demonstrate the effectiveness of ExCut for discovering high-quality clusters and their explanations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Code, data and the technical report are available at https://github.com/mhmgad/ExCut.

References

  1. Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., Yakhnenko, O.: Translating embeddings for modeling multi-relational data. In: NeurIPS, pp. 2787–2795 (2013)

    Google Scholar 

  2. Bouraoui, Z., Schockaert, S.: Learning conceptual space representations of interrelated concepts. In: IJCAI, pp. 1760–1766 (2018)

    Google Scholar 

  3. Costabello, L., Pai, S., Van, C.L., McGrath, R., McCarthy, N., Tabacof, P.: AmpliGraph: a library for representation learning on knowledge graphs (2019)

    Google Scholar 

  4. Dumancic, S., Blockeel, H.: An expressive dissimilarity measure for relational clustering over neighbourhood trees. MLJ (2017)

    Google Scholar 

  5. Dumancic, S., García-Durán, A., Niepert, M.: On embeddings as an alternative paradigm for relational learning. CoRR arXiv:abs/1806.11391v2 (2018)

  6. Fanizzi, N., d’Amato, C., Esposito, F.: Conceptual clustering and its application to concept Drift and Novelty Detection. In: Bechhofer, S., Hauswirth, M., Hoffmann, J., Koubarakis, M. (eds.) ESWC 2008. LNCS, vol. 5021, pp. 318–332. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-68234-9_25

    Chapter  MATH  Google Scholar 

  7. Fonseca, N.A., Costa, V.S., Camacho, R.: Conceptual clustering of multi-relational data. In: ILP, pp. 145–159 (2011)

    Google Scholar 

  8. Galárraga, L., Teflioudi, C., Hose, K., Suchanek, F.M.: Fast rule mining in ontological knowledge bases with AMIE+. VLDB J. 24(6), 707–730 (2015)

    Article  Google Scholar 

  9. Guo, Y., Pan, Z., Heflin, J.: LUBM: a benchmark for OWL knowledge base systems. J. Web Semant. 3(2–3), 158–182 (2005)

    Article  Google Scholar 

  10. Hamilton, W.L., Bajaj, P., Zitnik, M., Jurafsky, D., Leskovec, J.: Embedding logical queries on knowledge graphs. In: NeurIPS, pp. 2030–2041 (2018)

    Google Scholar 

  11. Ho, V.T., Stepanova, D., Gad-Elrab, M.H., Kharlamov, E., Weikum, G.: Rule learning from knowledge graphs guided by embedding models. In: Vrandečić, D., et al. (eds.) ISWC 2018. LNCS, vol. 11136, pp. 72–90. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00671-6_5

    Chapter  Google Scholar 

  12. Idahl, M., Khosla, M., Anand, A.: Finding interpretable concept spaces in node embeddings using knowledge bases. In: Cellier, P., Driessens, K. (eds.) ML/KDD, pp. 229–240 (2020)

    Google Scholar 

  13. Knobbe, A.J., Ho, E.K.Y.: Pattern teams. In: PKDD, pp. 577–584 (2006)

    Google Scholar 

  14. Lavrač, N., Flach, P., Zupan, B.: Rule evaluation measures: a unifying view. In: ILP, pp. 174–185 (1999)

    Google Scholar 

  15. Lin, Y., Liu, Z., Luan, H., Sun, M., Rao, S., Liu, S.: Modeling relation paths for representation learning of knowledge bases. In: EMNLP, pp. 705–714 (2015)

    Google Scholar 

  16. Lisi, F.A.: A pattern-based approach to conceptual clustering in FOL. In: Schärfe, H., Hitzler, P., Øhrstrøm, P. (eds.) ICCS-ConceptStruct 2006. LNCS (LNAI), vol. 4068, pp. 346–359. Springer, Heidelberg (2006). https://doi.org/10.1007/11787181_25

    Chapter  Google Scholar 

  17. MacQueen, J., et al.: Some methods for classification and analysis of multivariate observations. In: Proceedings of the fifth Berkeley Symposium on Mathematical Statistics and Probability, vol. 1, pp. 281–297 (1967)

    Google Scholar 

  18. Meilicke, C., Chekol, M.W., Ruffinelli, D., Stuckenschmidt, H.: Anytime bottom-up rule learning for knowledge graph completion. In: IJCAI, pp. 3137–3143 (2019)

    Google Scholar 

  19. Meilicke, C., Fink, M., Wang, Y., Ruffinelli, D., Gemulla, R., Stuckenschmidt, H.: Fine-grained evaluation of rule- and embedding-based systems for knowledge graph completion. In: Vrandečić, D., et al. (eds.) ISWC 2018. LNCS, vol. 11136, pp. 3–20. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00671-6_1

    Chapter  Google Scholar 

  20. Omran, P.G., Wang, K., Wang, Z.: An embedding-based approach to rule learning in knowledge graphs. IEEE Trans. Knowl. Data Eng. 1–1 (2019)

    Google Scholar 

  21. Omran, P.G., Wang, K., Wang, Z.: Scalable rule learning via learning representation. In: IJCAI, pp. 2149–2155 (2018)

    Google Scholar 

  22. Ortona, S., Meduri, V.V., Papotti, P.: Robust discovery of positive and negative rules in knowledge bases. In: ICDE, pp. 1168–1179. IEEE (2018)

    Google Scholar 

  23. Ren, H., Hu, W., Leskovec, J.: Query2box: Reasoning over knowledge graphs in vector space using box embeddings. In: ICLR (2020)

    Google Scholar 

  24. Ristoski, P., Paulheim, H.: A comparison of propositionalization strategies for creating features from linked open data. In: 1st Linked Data for Knowledge Discovery Workshop at ECML/PKDDAt: Nancy, France (2014)

    Google Scholar 

  25. Pérez-Suárez, A., Martínez-Trinidad, J.F., Carrasco-Ochoa, J.A.: A review of conceptual clustering algorithms. Artif. Intell. Rev. 52(2), 1267–1296 (2018). https://doi.org/10.1007/s10462-018-9627-1

    Article  Google Scholar 

  26. Suchanek, F.M., Kasneci, G., Weikum, G.: Yago: A core of semantic knowledge. In: Proceedings of WWW, pp. 697–706 (2007)

    Google Scholar 

  27. Tiddi, I., d’Aquin, M., Motta, E.: Dedalo: Looking for clusters explanations in a labyrinth of linked data. In: Presutti, V., d’Amato, C., Gandon, F., d’Aquin, M., Staab, S., Tordai, A. (eds.) The Semantic Web: Trends and Challenges (ESWC 2014). Lecture Notes in Computer Science, vol. 8465, pp. 333–348. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07443-6_23

    Chapter  Google Scholar 

  28. Tiddi, I., d’Aquin, M., Motta, E.: Data patterns explained with linked data. In: Bifet, A., et al. (eds.) Machine Learning and Knowledge Discovery in Databases (ECML PKDD 2015). Lecture Notes in Computer Science, vol. 9286, pp. 271–275. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23461-8_28

    Chapter  Google Scholar 

  29. Trouillon, T., Welbl, J., Riedel, S., Gaussier, É., Bouchard, G.: Complex embeddings for simple link prediction. In: ICML, pp. 2071–2080 (2016)

    Google Scholar 

  30. Vrandecic, D., Krötzsch, M.: Wikidata: a free collaborative knowledgebase. Commun. ACM 57(10), 78–85 (2014)

    Article  Google Scholar 

  31. Wang, C., Pan, S., Hu, R., Long, G., Jiang, J., Zhang, C.: Attributed graph clustering: a deep attentional embedding approach. In: IJCAI, pp. 3670–3676 (2019)

    Google Scholar 

  32. Xie, J., Girshick, R.B., Farhadi, A.: Unsupervised deep embedding for clustering analysis. In: ICML, pp. 478–487 (2016)

    Google Scholar 

  33. Xie, R., Liu, Z., Jia, J., Luan, H., Sun, M.: Representation learning of KGs with entity descriptions. In: AAAI, pp. 2659–2665 (2016)

    Google Scholar 

  34. Yang, F., Yang, Z., Cohen, W.W.: Differentiable learning of logical rules for knowledge base reasoning. In: NeurIPS, pp. 2319–2328 (2017)

    Google Scholar 

  35. Zhang, W., et al.: Iteratively learning embeddings and rules for knowledge graph reasoning. In: WWW, pp. 2366–2377 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed H. Gad-Elrab .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gad-Elrab, M.H., Stepanova, D., Tran, TK., Adel, H., Weikum, G. (2020). ExCut: Explainable Embedding-Based Clustering over Knowledge Graphs. In: Pan, J.Z., et al. The Semantic Web – ISWC 2020. ISWC 2020. Lecture Notes in Computer Science(), vol 12506. Springer, Cham. https://doi.org/10.1007/978-3-030-62419-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-62419-4_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-62418-7

  • Online ISBN: 978-3-030-62419-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics