Skip to main content

Refining Node Embeddings via Semantic Proximity

  • Conference paper
  • First Online:
The Semantic Web – ISWC 2020 (ISWC 2020)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12506))

Included in the following conference series:

Abstract

There is a variety of available approaches to learn graph node embeddings. One of their common underlying task is the generation of (biased) random walks that are then fed into representation learning techniques. Some techniques generate biased random walks by using structural information. Other approaches, also rely on some form of semantic information. While the former are purely structural, thus not fully considering knowledge available in semantically rich networks, the latter require complex inputs (e.g., metapaths) or only leverage node types that may not be available. The goal of this paper is to overcome these limitations by introducing NESP (Node Embeddings via Semantic Proximity), which features two main components. The first provides four different ways of biasing random walks by leveraging semantic relatedness between predicates. The second component focuses on refining (existing) embeddings by leveraging the notion of semantic proximity. This component iteratively refines an initial set of node embeddings imposing the embeddings of semantic neighboring nodes of a node to lie within a sphere of fixed radius. We discuss an extensive experimental evaluation and comparison with related work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bandyopadhyay, S., Biswas, A., Murty, M., Narayanam, R.: Beyond node embedding: a direct unsupervised edge representation framework for homogeneous networks. arXiv preprint arXiv:1912.05140 (2019)

  2. Cai, H., Zheng, V.W., Chang, K.C.C.: A comprehensive survey of graph embedding: problems, techniques, and applications. IEEE Trans. Knowl. Data Eng. 30(9), 1616–1637 (2018)

    Article  Google Scholar 

  3. Chen, X., Yu, G., Wang, J., Domeniconi, C., Li, Z., Zhang, X.: ActiveHNE: active heterogeneous network embedding. In: Proceedings of the 28th International Joint Conference on Artificial Intelligence (IJCAI), pp. 2123–2129 (2019)

    Google Scholar 

  4. Cochez, M., Ristoski, P., Ponzetto, S.P., Paulheim, H.: Global RDF vector space embeddings. In: d’Amato, C., et al. (eds.) ISWC 2017. LNCS, vol. 10587, pp. 190–207. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68288-4_12

    Chapter  Google Scholar 

  5. Dong, Y., Chawla, N.V., Swami, A.: metapath2vec: scalable representation learning for heterogeneous networks. In: Proceedings of the 23rd International Conference on Knowledge Discovery and Data Mining (KDD), pp. 135–144 (2017)

    Google Scholar 

  6. Fionda, V., Pirrò, G.: Querying graphs with preferences. In: Proceedings of the 22nd International Conference on Information and Knowledge Management (CIKM), pp. 929–938 (2013)

    Google Scholar 

  7. Fionda, V., Pirrò, G.: Learning triple embeddings from knowledge graphs. In: Proceedings of the 34th Conference on Artificial Intelligence (AAAI), pp. 3874–3881 (2020)

    Google Scholar 

  8. Fu, T., Lee, W.C., Lei, Z.: Hin2vec: explore meta-paths in heterogeneous information networks for representation learning. In: Proceedings of the Conference on Information and Knowledge Management (CIKM), pp. 1797–1806 (2017)

    Google Scholar 

  9. Grover, A., Leskovec, J.: node2vec: scalable feature learning for networks. In: Proceedings of International Conference on Knowledge Discovery and Data Mining (KDD), pp. 855–864 (2016)

    Google Scholar 

  10. Hamilton, W., Ying, Z., Leskovec, J.: Inductive representation learning on large graphs. In: Proceedings of Advances in Neural Information Processing Systems (NIPS), pp. 1024–1034 (2017)

    Google Scholar 

  11. Huang, Z., Mamoulis, N.: Heterogeneous information network embedding for meta path based proximity. arXiv preprint arXiv:1701.05291 (2017)

  12. Hussein, R., Yang, D., Cudré-Mauroux, P.: Are meta-paths necessary?: revisiting heterogeneous graph embeddings. In: Proceedings of the 27th International Conference on Information and Knowledge Management (CIKM), pp. 437–446 (2018)

    Google Scholar 

  13. Liu, Z., et al.: Interactive paths embedding for semantic proximity search on heterogeneous graphs. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 1860–1869. ACM (2018)

    Google Scholar 

  14. Liu, Z., et al.: Semantic proximity search on heterogeneous graph by proximity embedding. In: Proceedings of 31st Conference on Artificial Intelligence (AAAI) (2017)

    Google Scholar 

  15. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word representations in vector space. In: Proceedings of the 1st International Conference on Learning Representations (ICLR) (2013)

    Google Scholar 

  16. Mukherjee, S., Oates, T., Wright, R.: Graph node embeddings using domain-aware biased random walks. arXiv preprint arXiv:1908.02947 (2019)

  17. Perozzi, B., Al-Rfou, R., Skiena, S.: DeepWalk: online learning of social representations. In: Proceedings of the 20th International Conference on Knowledge Discovery and Data Mining (KDD), pp. 701–710 (2014)

    Google Scholar 

  18. Pirrò, G.: Building relatedness explanations from knowledge graphs. Semant. Web 10(6), 963–990 (2019)

    Article  Google Scholar 

  19. Recht, B., Re, C., Wright, S., Niu, F.: HOGWILD: a lock-free approach to parallelizing stochastic gradient descent. In: Proceedings of Advances in Neural Information Processing Systems (NIPS), pp. 693–701 (2011)

    Google Scholar 

  20. Ristoski, P., Rosati, J., Di Noia, T., De Leone, R., Paulheim, H.: RDF2Vec: RDF graph embeddings and their applications. Semant. Web 10(4), 721–752 (2019)

    Article  Google Scholar 

  21. Shang, J., Qu, M., Liu, J., Kaplan, L.M., Han, J., Peng, J.: Meta-path guided embedding for similarity search in large-scale heterogeneous information networks. arXiv preprint arXiv:1610.09769 (2016)

  22. Shi, Y., Zhu, Q., Guo, F., Zhang, C., Han, J.: Easing embedding learning by comprehensive transcription of heterogeneous information networks. In: Proceedings of International Conference on Knowledge Discovery & Data Mining (KDD), pp. 2190–2199 (2018)

    Google Scholar 

  23. Tang, J., Qu, M., Mei, Q.: PTE: predictive text embedding through large-scale heterogeneous text networks. In: Proceedings of 21st International Conference on Knowledge Discovery and Data Mining, pp. 1165–1174 (2015)

    Google Scholar 

  24. Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J., Mei, Q.: LINE: large-scale information network embedding. In: Proceedings of 24th International Conference on World Wide Web (WWW), pp. 1067–1077 (2015)

    Google Scholar 

  25. Yang, C., Xiao, Y., Zhang, Y., Sun, Y., Han, J.: Heterogeneous network representation learning: survey, benchmark, evaluation, and beyond. arXiv preprint arXiv:2004.00216 (2020)

  26. Lu, Y., Shi, C., Hu, L., Liu, Z.: Relation structure-aware heterogeneous information network embedding. In: Proceedings of 33rd Conference on Artificial Intelligence (AAAI) (2019)

    Google Scholar 

  27. Zafarani, R., Liu, H.: Social computing data repository at ASU (2009)

    Google Scholar 

  28. Zhang, C., Swami, A., Chawla, N.V.: SHNE: representation learning for semantic-associated heterogeneous networks. In: Proceedings of 12th International Conference on Web Search and Data Mining (WSDM), pp. 690–698 (2019)

    Google Scholar 

  29. Zhang, D., Yin, J., Zhu, X., Zhang, C.: MetaGraph2Vec: complex semantic path augmented heterogeneous network embedding. In: Proceedings of Pacific-Asia Conference on Knowledge Discovery and Data Mining, pp. 196–208 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Pirrò .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chekol, M.W., Pirrò, G. (2020). Refining Node Embeddings via Semantic Proximity. In: Pan, J.Z., et al. The Semantic Web – ISWC 2020. ISWC 2020. Lecture Notes in Computer Science(), vol 12506. Springer, Cham. https://doi.org/10.1007/978-3-030-62419-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-62419-4_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-62418-7

  • Online ISBN: 978-3-030-62419-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics