Skip to main content

A New Health Assessment Approach of Lithium-Ion Batteries Under Variable Operation Conditions

  • Conference paper
  • First Online:
Machine Learning for Cyber Security (ML4CS 2020)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 12487))

Included in the following conference series:

  • 1167 Accesses

Abstract

The monitoring information of the Lithium-ion batteries is influenced by variable operation conditions. Many health assessment approaches acquire the battery monitoring information to assess the battery health status. However, these approaches have poor adaptability under variable operation conditions. This paper presents a new health assessment approach of the Lithium-ion batteries under variable operation conditions. Specifically, it extracts the geometrical characteristics of charging and discharging curves of the lithium-ion batteries. Furthermore, it adapts a multiple dimensionality reduction approach based on the locally linear embedding and Isomap. Moreover, the synthetical correlation coefficient is proposed to evaluate the ability of the method to be immune to variable operation conditions. Finally, the example illustrates the effectiveness of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yang, Y., Yuan, W., Zhang, X., et al.: Overview on the applications of three-dimensional printing for rechargeable lithium-ion batteries. Appl. Energy 257(1), 114002 (2020)

    Article  Google Scholar 

  2. Gong, X., Xiong, R., Mi, C.C.: Study of the characteristics of battery packs in electric vehicles with parallel-connected lithium-ion battery cells. IEEE Trans. Ind. Appl. 51(2), 1872–1879 (2015)

    Article  Google Scholar 

  3. Hannan, M.A., Hoque, M.M., Peng, S.E., et al.: Lithium-ion battery charge equalization algorithm for electric vehicle applications. IEEE Trans. Ind. Appl. 53(3), 2541–2549 (2017)

    Article  Google Scholar 

  4. Giordano, G., Klass, V., Behm, M., et al.: Model-based lithium-ion battery resistance estimation from electric vehicle operating data. IEEE Trans. Veh. Technol. 67(5), 3720–3728 (2018)

    Article  Google Scholar 

  5. Hong, S., Lv, C., Zhao, T., et al.: Cascading failure analysis and restoration strategy in an interdependent network. J. Phys. A: Math. Theor. 19(49), 195101 (2016)

    Article  Google Scholar 

  6. Hong, S., Wang, B., Ma, X., et al.: Failure cascade in interdependent network with traffic loads. J. Phys. A: Math. Theor. 48(48), 485101 (2015)

    Article  MathSciNet  Google Scholar 

  7. Hong, S., Zhu, J., Braunstein, L.A., et al.: Cascading failure and recovery of spatially interdependent networks. J. Stat. Mech.-Theory Exp. 10, 103208 (2017)

    Article  MathSciNet  Google Scholar 

  8. Liu, D., Song, Y., Li, L., et al.: On-line life cycle health assessment for lithium-ion battery in electric vehicles. J. Clean. Prod. 199(20), 1050–1065 (2018)

    Article  Google Scholar 

  9. Xiong, R., Zhang, Y., Wang, J., et al.: Lithium-ion battery health prognosis based on a real battery management system used in electric vehicles. IEEE Trans. Veh. Technol. 68(5), 4110–4121 (2019)

    Article  Google Scholar 

  10. Yang, Q., Xu, J., Cao, B., et al.: State-of-health Estimation of Lithium-ion Battery Based on Interval Capacity. Energy Procedia 105, 2342–2347 (2017)

    Article  Google Scholar 

  11. Kong, X.R., Bonakdarpour, A., Wetton, B., et al.: State of health estimation for lithium-ion batteries. IFAC-PapersOnline 51, 667–671 (2018)

    Article  Google Scholar 

  12. Jiang, J., Lin, Z., Ju, Q., et al.: Electrochemical impedance spectra for lithium-ion battery ageing considering the rate of discharge ability. Energy Procedia 105, 844–849 (2017)

    Article  Google Scholar 

  13. Hong, S., Yang, H., Zhao, T., et al.: Epidemic spreading model of complex dynamical network with the heterogeneity of nodes. Int. J. Syst. Sci. 11(47), 2745–2752 (2016)

    Article  Google Scholar 

  14. Hong, S., Zhang, X., Zhu, J., et al.: Suppressing failure cascades in interconnected networks: considering capacity allocation pattern and load redistribution. Modern Phys. Lett. B 5(30), 1650049 (2016)

    Article  Google Scholar 

  15. Hong, S., Zhou, Z., Zio, E., et al.: Condition assessment for the performance degradation of bearing based on a combinatorial feature extraction method. Digit. Sig. Process. 27, 159–166 (2014)

    Article  Google Scholar 

  16. Hong, S., Zhou, Z., Zio, E., et al.: An adaptive method for health trend prediction of rotating bearings. Digit. Sig. Process. 35, 117–123 (2014)

    Article  Google Scholar 

  17. Bao, T., Ma, J., Gan, Z.: Performance assessment of lithium-ion battery based on geometric features and manifold distance. J. Shandong Univ. (Eng. Sci.) 47(5), 157–165 (2017)

    Google Scholar 

  18. Saha, B., Goebel, K.: Battery data set. NASA ames prognostics data repository. NASA Ames Research Center, Moffett Field (2007). http://ti.arc.nasa.gov/project/prognostic-data-repository

  19. Li, W., Liu, Z.: A method of SVM with normalization in intrusion detection. Procedia Environ. Sci. 11(Part A), 256–262 (2011)

    Article  Google Scholar 

  20. Ward, J.L., Lumsden, S.L.: Locally linear embedding: dimension reduction of massive protostellar spectra. Mon. Not. Roy. Astron. Soc. 461(2), 2250–2256 (2016)

    Article  Google Scholar 

  21. Roweis, S., Saul, L.: Nonlinear dimensionality reduction by locally linear embedding. Science 290(5500), 2323–2326 (2000)

    Article  Google Scholar 

  22. Xu, K., Li, H., Liu, Z.: ISOMAP-based spatiotemporal modeling for lithium-ion battery thermal process. IEEE Trans. Ind. Inform. 14(2), 569–577 (2018)

    Article  Google Scholar 

  23. Tenenbaum, J.B., De Silva, V., Langford, J.C.: A global geometric framework for nonlinear dimensionality reduction. Science 290(5500), 2319–2323 (2000)

    Article  Google Scholar 

  24. Amar, A., Wang, Y., Leus, G.: Extending the classical multidimensional scaling algorithm given partial pairwise distance measurements. IEEE Sig. Process. Lett. 17(5), 473–476 (2010)

    Article  Google Scholar 

  25. Pohlheim, H.: Multidimensional scaling for evolutionary algorithms—visualization of the path through search space and solution space using sammon mapping. Artif. Life 12(2), 203–209 (2006)

    Google Scholar 

  26. Chen, Z., Wei, H., Wan, Q., Ye, S., et al.: A supplement to multidimensional scaling framework for mobile location: a unified view. IEEE Trans. Sig. Process. 57(5), 2030–2034 (2009)

    Article  MathSciNet  Google Scholar 

  27. Gillham, E.M.: A Life of Sir Francis Galton. Oxford University Press, Oxford (2001)

    Google Scholar 

  28. Ren, L., Zhao, L., Hong, S., et al.: Remaining useful life prediction for lithium-ion battery: a deep learning approach. IEEE Access 6, 50587–50598 (2018)

    Article  Google Scholar 

  29. Adler, J., Parmryd, I.: Quantifying colocalization by correlation: the Pearson correlation coefficient is superior to the Mander’s overlap coefficient. Cytometry Part A 77, 733–742 (2010)

    Article  Google Scholar 

Download references

Acknowledgments

The authors are highly thankful for National Key Research Program (2019YFB1706001), National Natural Science Foundation of China (61773001), Industrial Internet Innovation Development Project (TC190H46B).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheng Hong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hong, S., Zeng, Y. (2020). A New Health Assessment Approach of Lithium-Ion Batteries Under Variable Operation Conditions. In: Chen, X., Yan, H., Yan, Q., Zhang, X. (eds) Machine Learning for Cyber Security. ML4CS 2020. Lecture Notes in Computer Science(), vol 12487. Springer, Cham. https://doi.org/10.1007/978-3-030-62460-6_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-62460-6_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-62459-0

  • Online ISBN: 978-3-030-62460-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics