Abstract
Interval programming provides a mathematical model for uncertain optimization problems, in which the input data can be perturbed independently within the given lower and upper bounds. This paper discusses the recently proposed outcome range problem in the context of interval linear programming. The motivation for the outcome range problem is to assess further impacts and consequences of optimal decision making, modeled in the program by an additional linear outcome function. Specifically, the goal is to compute a lower and an upper bound on the value of the given outcome function over the optimal solution set of the interval program. In this paper, we focus mainly on programs with interval coefficients in the objective function and the right-hand-side vector. For this special class of interval programs, we design an algorithm for computing the outcome range exactly, based on complementary slackness and guided basis enumeration. Finally, we perform a series of computational experiments to evaluate the performance of the proposed method.
E. Garajová and M. Rada were supported by the Czech Science Foundation under Grant P403-20-17529S. M. Hladík was supported by the Czech Science Foundation under Grant P403-18-04735S. E. Garajová and M. Hladík were also supported by the Charles University project GA UK No. 180420.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Allahdadi, M., Mishmast Nehi, H.: The optimal solution set of the interval linear programming problems. Optim. Lett. 7(8), 1893–1911 (2012). https://doi.org/10.1007/s11590-012-0530-4
Chaiyakan, S., Thipwiwatpotjana, P.: Mean Absolute deviation portfolio frontiers with interval-valued returns. In: Seki, H., Nguyen, C.H., Huynh, V.-N., Inuiguchi, M. (eds.) IUKM 2019. LNCS (LNAI), vol. 11471, pp. 222–234. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-14815-7_19
Corsaro, S., Marino, M.: Interval linear systems: the state of the art. Comput. Stat. 21(2), 365–384 (2006). https://doi.org/10.1007/s00180-006-0268-5
D’Ambrosio, C., Gentili, M., Cerulli, R.: The optimal value range problem for the Interval (immune) transportation problem. Omega 95, 102059 (2020). https://doi.org/10.1016/j.omega.2019.04.002
Garajová, E., Hladík, M.: On the optimal solution set in interval linear programming. Comput. Optim. Appl. 72(1), 269–292 (2018). https://doi.org/10.1007/s10589-018-0029-8
Garajová, E., Hladík, M., Rada, M.: Interval linear programming under transformations: optimal solutions and optimal value range. CEJOR 27(3), 601–614 (2018). https://doi.org/10.1007/s10100-018-0580-5
Gurobi Optimization, LLC: Gurobi optimizer reference manual (2020). http://www.gurobi.com
Hladík, M.: Optimal value range in interval linear programming. Fuzzy Optim. Decis. Making 8(3), 283–294 (2009). https://doi.org/10.1007/s10700-009-9060-7
Hladík, M.: An interval linear programming contractor. In: Ramík, J., Stavárek, D. (eds.) Proceedings 30th International Conference on Mathematical Methods in Economics 2012, Karviná, Czech Republic, pp. 284–289 (Part I), Silesian University in Opava, School of Business Administration in Karviná, September 2012
Hladík, M.: The worst case finite optimal value in interval linear programming. Croatian Oper. Res. Rev. 9(2), 245–254 (2018). https://doi.org/10.17535/crorr.2018.0019
Inuiguchi, M.: Enumeration of all possibly optimal vertices with possible optimality degrees in linear programming problems with a possibilistic objective function. Fuzzy Optim. Decis. Making 3(4), 311–326 (2004). https://doi.org/10.1007/s10700-004-4201-5
Jansson, C., Rump, S.M.: Rigorous solution of linear programming problems with uncertain data. ZOR - Methods Models Oper. Res. 35(2), 87–111 (1991). https://doi.org/10.1007/BF02331571
Jansson, C.: A self-validating method for solving linear programming problems with interval input data. In: Kulisch, U., Stetter, H.J. (eds.) Scientific Computation with Automatic Result Verification. Computing Supplementum, pp. 33–45. Springer, Vienna (1988). https://doi.org/10.1007/978-3-7091-6957-5_4
Lu, H.W., Cao, M.F., Wang, Y., Fan, X., He, L.: Numerical solutions comparison for interval linear programming problems based on coverage and validity rates. Appl. Math. Model. 38(3), 1092–1100 (2014). https://doi.org/10.1016/j.apm.2013.07.030
MathWorks: MATLAB fmincon. https://www.mathworks.com/help/optim/ug/fmincon.html
Mishmast Nehi, H., Ashayerinasab, H.A., Allahdadi, M.: Solving methods for interval linear programming problem: a review and an improved method. Oper. Res. Int. J. 20(3), 1205–1229 (2018). https://doi.org/10.1007/s12351-018-0383-4
Mohammadi, M., Gentili, M.: Bounds on the worst optimal value in interval linear programming. Soft. Comput. 23(21), 11055–11061 (2018). https://doi.org/10.1007/s00500-018-3658-z
Mohammadi, M., Gentili, M.: The outcome range problem. arXiv:1910.05913 [math], April 2020. http://arxiv.org/abs/1910.05913
Mráz, F.: Calculating the exact bounds of optimal values in LP with interval coefficients. Ann. Oper. Res. 81, 51–62 (1998). https://doi.org/10.1023/A:1018985914065
Neumaier, A.: Interval Methods for Systems of Equations. Encyclopedia of Mathematics and Its Applications. Cambridge University Press, Cambridge (1991). https://doi.org/10.1017/CBO9780511526473
Rohn, J.: Interval linear programming. In: Fiedler, M., Nedoma, J., Ramík, J., Rohn, J., Zimmermann, K. (eds.) Linear Optimization Problems with Inexact Data, Boston, MA, US, pp. 79–100. Springer (2006). https://doi.org/10.1007/0-387-32698-7_3
Acknowledgements
The authors would like to thank M. Mohammadi and M. Gentili for providing the test instances and results of the fmincon method.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Garajová, E., Rada, M., Hladík, M. (2020). Outcome Range Problem in Interval Linear Programming: An Exact Approach. In: Huynh, VN., Entani, T., Jeenanunta, C., Inuiguchi, M., Yenradee, P. (eds) Integrated Uncertainty in Knowledge Modelling and Decision Making. IUKM 2020. Lecture Notes in Computer Science(), vol 12482. Springer, Cham. https://doi.org/10.1007/978-3-030-62509-2_1
Download citation
DOI: https://doi.org/10.1007/978-3-030-62509-2_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-62508-5
Online ISBN: 978-3-030-62509-2
eBook Packages: Computer ScienceComputer Science (R0)