Skip to main content

Towards a Framework for Empirical Measurement of Conceptualization Qualities

  • Conference paper
  • First Online:
Conceptual Modeling (ER 2020)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12400))

Included in the following conference series:

Abstract

Conceptualization development is central in modeling language design. As one of their first design steps, language designers need to decide on a set of concepts on which the language will be based and which can be understood and used by a population of modelers for characterizing and representing relevant domain information. Thus, exposing candidate concept sets to future users may offer insights on how well the concepts of choice are understood and distinguished from each other by those who will be called to actually use the language. We propose an empirical measurement framework to allow just that. The framework consists of an instrumentation approach whereby participants sampled from the user population classify domain expressions to the corresponding concepts, and a set of measurement constructs for translating participant observed data into design insights. A small case study is conducted to explore the feasibility and limitations of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alothman, Norah., Zhian, Mehrnaz, Liaskos, Sotirios: User perception of numeric contribution semantics for goal models: an exploratory experiment. In: Mayr, Heinrich C., Guizzardi, Giancarlo, Ma, Hui, Pastor, Oscar (eds.) ER 2017. LNCS, vol. 10650, pp. 451–465. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-69904-2_34

    Chapter  Google Scholar 

  2. Amyot, D., Mussbacher, G.: User requirements notation: the first ten years, the next ten years (Invited Paper). J. Software 6(5), 747–768 (2011)

    Article  Google Scholar 

  3. Bernabé, César Henrique., Silva Souza, Vítor E., Almeida Falbo, Ricardo de., Guizzardi, Renata S.S., Silva, Carla: GORO 2.0: evolving an ontology for goal-oriented requirements engineering. In: Guizzardi, Giancarlo, Gailly, Frederik, Suzana Pitangueira Maciel, Rita (eds.) ER 2019. LNCS, vol. 11787, pp. 169–179. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-34146-6_15

    Chapter  Google Scholar 

  4. Bork, D., Karagiannis, D., Pittl, B.: How are metamodels specified in practice? empirical insights and recommendations. In: Proceedings of the 24th Americas Conference on Information Systems (AMCIS 2018). New Orleans, LA (2018)

    Google Scholar 

  5. Caire, P., Genon, N., Heymans, P., Moody, D.L.: Visual notation design 2.0: towards user comprehensible requirements engineering notations. In: Proceedings of the 21st IEEE International Requirements Engineering Conference (RE 2013), pp. 115–124 (2013)

    Google Scholar 

  6. Cracau, D., Lima, J.E.D.: On the normalized herfindahl-hirschman index: a technical note. Int. J. Food Syst. Dyn. 4(7), 382–386 (2016)

    Google Scholar 

  7. Crump, M.J.C., McDonnell, J.V., Gureckis, T.M.: Evaluating Amazon’s mechanical turk as a tool for experimental behavioral research. PLoS ONE 8(3), e57410 (2013)

    Google Scholar 

  8. Cruz-Lemus, J.A., Genero, M., Manso, M.E., Morasca, S., Piattini, M.: Assessing the understandability of UML statechart diagrams with composite states–a family of empirical studies. Empirical Software Eng. 14(6), 685–719 (2009)

    Article  Google Scholar 

  9. Dalpiaz, F., Franch, X., Horkoff, J.: iStar 2.0 Language Guide. The Computing Research Repository (CoRR) (2016). http://arxiv.org/abs/1605.07767

  10. Dardenne, A., van Lamsweerde, A., Fickas, S.: Goal-directed requirements acquisition. Sci. Comput. Program. 20, 3–50 (1993)

    Article  Google Scholar 

  11. Estrada, H., Rebollar, A.M., Pastor, O., Mylopoulos, J.: An empirical evaluation of the i* framework in a model-based software generation environment. In: Proceedings of the 18th International Conference on Advanced Information Systems Engineering (CAiSE 2006), pp. 513–527. Luxembourg (2006)

    Google Scholar 

  12. Guizzardi, G.: Ontological foundations for structural conceptual models. Ph.D. thesis, University of Twente (2005)

    Google Scholar 

  13. Hadar, I., Reinhartz-Berger, I., Kuflik, T., Perini, A., Ricca, F., Susi, A.: Comparing the comprehensibility of requirements models expressed in Use Case and Tropos: results from a family of experiments. Inf. Software Technol. 55(10), 1823–1843 (2013)

    Article  Google Scholar 

  14. Henderson-Sellers, B., Gonzalez-Perez, C.: Granularity in conceptual modelling: application to metamodels. In: Proceedings of the 29th International Conference on Conceptual Modeling (ER 2010), pp. 219–232. Vancouver, Canada (2010)

    Google Scholar 

  15. Horkoff, Jennifer, Yu, Eric: Finding solutions in goal models: an interactive backward reasoning approach. In: Parsons, Jeffrey, Saeki, Motoshi, Shoval, Peretz, Woo, Carson, Wand, Yair (eds.) ER 2010. LNCS, vol. 6412, pp. 59–75. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16373-9_5

    Chapter  Google Scholar 

  16. Houy, C., Fettke, P., Loos, P.: Understanding understandability of conceptual models - What are we actually talking about? In: Proceedings of the 31st International Conference on Conceptual Modeling (ER 2012), pp. 64–77. Florence, Italy (2012)

    Google Scholar 

  17. Karagiannis, D., Khün, H.: Metamodelling platforms. In: Proceedings of the 3rd International Conference on E-commerce and Web Technology, pp. 182–197. France (2002)

    Google Scholar 

  18. Krippendorff, K.: Content Analysis: An Introduction to its Methodology. SAGE (2004)

    Google Scholar 

  19. Krogstie, J.: Model-Based Development and Evolution of Information Systems: A Quality Approach. Springer, Heidelberg (2012). https://doi.org/10.1007/978-1-4471-2936-3

  20. Liaskos, S., Dundjerovic, T., Gabriel, G.: Comparing alternative goal model visualizations for decision making: an exploratory experiment. In: Proceedings of the 33rd ACM Symposium on Applied Computing (SAC 2018). pp. 1272–1281. PAU, France (2018)

    Google Scholar 

  21. Liaskos, S., Ronse, A., Zhian, M.: Assessing the intuitiveness of qualitative contribution relationships in goal models: an exploratory experiment. In: Proceedings of the 11th ACM/IEEE International Symposium on Empirical Software Engineering and Measurement (ESEM 2017), pp. 466–471. Toronto, Ontario (2017)

    Google Scholar 

  22. Liaskos, Sotirios, Tambosi, Wisal: Factors affecting comprehension of contribution links in goal models: an experiment. In: Laender, Alberto H.F., Pernici, Barbara, Lim, Ee-Peng, de Oliveira, José Palazzo M. (eds.) ER 2019. LNCS, vol. 11788, pp. 525–539. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-33223-5_43

    Chapter  Google Scholar 

  23. Lindland, O.I., Sindre, G., Solvberg, A.: Understanding quality in conceptual modeling. IEEE Software 11(2), 42–49 (1994)

    Article  Google Scholar 

  24. Mendling, J., Strembeck, M.: Influence factors of understanding business process models. In: Proceedings of the 11th International Conference on Business Information Systems, pp. 142–153. Innsbruck, Austria (2008)

    Google Scholar 

  25. Nelson, H.J., Poels, G., Genero, M., Piattini, M.: A conceptual modeling quality framework. Softw. Quality J. 20, 201–228 (2012)

    Article  Google Scholar 

  26. Olivé, A.: Conceptual Modeling of Information Systems. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72677-7

  27. Santos, M., Gralha, C., Goulão, M., Araújo, J.: Increasing the semantic transparency of the KAOS goal model concrete syntax. In: Proceedings of the 37th International Conference on Conceptual Modeling (ER 2018), pp. 424–439. Xi’an, China (2018)

    Google Scholar 

  28. Stoet, G.: PsyToolkit: a software package for programming psychological experiments using Linux. Behav. Res. Methods 42(4), 1096–1104 (2010)

    Article  Google Scholar 

  29. Stoet, G.: PsyToolkit: a novel web-based method for running online questionnaires and reaction-time experiments. Teach. Psych. 44(1), 24–31 (2017)

    Article  Google Scholar 

  30. Susi, A., Perini, A., Mylopoulos, J.: The tropos metamodel and its use. Informatica 29, 401–408 (2005)

    Google Scholar 

  31. The Open Group: ArchiMate® 3.1 Specification. Technical report (2019)

    Google Scholar 

  32. Wand, Y., Weber, R.: On the ontological expressiveness of information systems analysis and design grammars. Inf. Syst. J. 3(4), 217–237 (1993)

    Article  Google Scholar 

  33. Yu, E.S.K.: Towards modelling and reasoning support for early-phase requirements engineering. In: Proceedings of the 3rd IEEE International Symposium on Requirements Engineering (RE 1997). pp. 226–235. Annapolis, MD (1997)

    Google Scholar 

  34. Yu, E.S.: GRL - Goal-oriented Requirement Language. http://www.cs.toronto.edu/km/GRL/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sotirios Liaskos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liaskos, S., Jaouhar, I. (2020). Towards a Framework for Empirical Measurement of Conceptualization Qualities. In: Dobbie, G., Frank, U., Kappel, G., Liddle, S.W., Mayr, H.C. (eds) Conceptual Modeling. ER 2020. Lecture Notes in Computer Science(), vol 12400. Springer, Cham. https://doi.org/10.1007/978-3-030-62522-1_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-62522-1_38

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-62521-4

  • Online ISBN: 978-3-030-62522-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics