Skip to main content

Do Declarative Process Models Help to Reduce Cognitive Biases Related to Business Rules?

  • Conference paper
  • First Online:
Conceptual Modeling (ER 2020)

Abstract

Declarative process modeling languages, such as Declare, represent processes by means of temporal rules, namely constraints. Those languages typically come endowed with a graphical notation to draw such models diagrammatically. In this paper, we explore the effects of diagrammatic representation on humans’ deductive reasoning involved in the analysis and compliance checking of declarative process models. In an experiment, we compared textual descriptions of business rules against textual descriptions that were supplemented with declarative models. Results based on a sample of 75 subjects indicate that the declarative process models did not improve but rather lowered reasoning performance. Thus, for novice users, using the graphical notation of Declare may not help readers properly understand business rules: they may confuse them in comparison to textual descriptions. A likely explanation of the negative effect of graphical declarative models on human reasoning is that readers interpret edges wrongly. This has implications for the practical use of business rules on the one hand and the design of declarative process modeling languages on the other.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Houy, C., Fettke, P., Loos, P.: On the theoretical foundations of research into the understandability of business process models. In: European Conference on Information Systems, Tel Aviv (2014)

    Google Scholar 

  2. van der Aalst, W.M.P., Pesic, M.: DecSerFlow: towards a truly declarative service flow language. In: Bravetti, M., Núñez, M., Zavattaro, G. (eds.) WS-FM 2006. LNCS, vol. 4184, pp. 1–23. Springer, Heidelberg (2006). https://doi.org/10.1007/11841197_1

    Chapter  Google Scholar 

  3. Bose, R.P.J.C., Maggi, F.M., van der Aalst, W.M.P.: enhancing declare maps based on event correlations. In: Daniel, F., Wang, J., Weber, B. (eds.) BPM 2013. LNCS, vol. 8094, pp. 97–112. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40176-3_9

    Chapter  Google Scholar 

  4. Fahland, D., et al.: Declarative versus imperative process modeling languages: the issue of understandability. In: International Workshop BPMDS and International Conference EMMSAD, pp. 353–366 (2009)

    Google Scholar 

  5. Figl, K.: Comprehension of procedural visual business process models. Bus. Inf. Syst. Eng. 59, 41–67 (2017)

    Article  Google Scholar 

  6. Johnson-Laird, P.N.: Deductive reasoning. Wiley Interdisciplinary Rev. Cogn. Sci. 1, 8–17 (2010)

    Article  Google Scholar 

  7. Boritz, J.E., Borthick, A.F., Presslee, A.: The effect of business process representation type on assessment of business and control risks: diagrams versus narratives. Issues Account. Educ. 27, 895–915 (2012)

    Article  Google Scholar 

  8. Haisjackl, C., Zugal, S.: Investigating differences between graphical and textual declarative process models. In: Iliadis, L., Papazoglou, M., Pohl, K. (eds.) CAiSE 2014. LNBIP, vol. 178, pp. 194–206. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07869-4_17

    Chapter  Google Scholar 

  9. López, H.A., Debois, S., Hildebrandt, T.T., Marquard, M.: The process highlighter: from texts to declarative processes and back. BPM (Dissertation/Demos/Industry) 2196, 66–70 (2018)

    Google Scholar 

  10. De Smedt, J., De Weerdt, J., Serral, E., Vanthienen, J.: Discovering hidden dependencies in constraint-based declarative process models for improving understandability. Inf. Syst. 74, 40–52 (2018)

    Article  Google Scholar 

  11. Recker, J.: Empirical investigation of the usefulness of gateway constructs in process models. European J. Inf. Syst. 22, 673–689 (2013)

    Article  Google Scholar 

  12. Figl, K., Laue, R.: Influence factors for local comprehensibility of process models. Int. J. Hum Comput Stud. 82, 96–110 (2015)

    Article  Google Scholar 

  13. Steinke, G., Nickolette, C.: Business rules as the basis of an organization’s information systems. Ind. Manage. Data Syst. 103, 52–63 (2003)

    Article  Google Scholar 

  14. Ross, R.G.: What’s wrong with if-then syntax for expressing business rules ~ one size doesn’t fit all. Bus. Rules J. 8 (2007)

    Google Scholar 

  15. Bauer, M.I., Johnson-Laird, P.N.: How diagrams can improve reasoning. Psychol. Sci. 4, 372–378 (1993)

    Article  Google Scholar 

  16. Byrne, R.M.J., Johnson-Laird, P.N.: If and the problems of conditional reasoning. Trends Cogn. Sci. 13, 282–287 (2009)

    Article  Google Scholar 

  17. Cummins, D., Lubart, T., Alksnis, O., Rist, R.: Conditional reasoning and causation. Memory Cogn. 19, 274–282 (1991)

    Article  Google Scholar 

  18. Object Management Group: How Business Rules Relate to Business processes from a business person’s point of view. Business Rules Symposium, Minneapolis (2010)

    Google Scholar 

  19. Ross, R.G.: The Business Rules Manifesto. Business Rules Group (2003)

    Google Scholar 

  20. Vessey, I.: Cognitive fit: a theory-based analysis of the graphs versus tables literature. Decision Sci. 22, 219–240 (1991)

    Article  Google Scholar 

  21. Zur Muehlen, M., Indulska, M.: Modeling languages for business processes and business rules: a representational analysis. Inf. Syst. 35, 379–390 (2010)

    Article  Google Scholar 

  22. Knuplesch, D., Reichert, M., Ly, L.T., Kumar, A., Rinderle-Ma, S.: Visual modeling of business process compliance rules with the support of multiple perspectives. In: Ng, W., Storey, V.C., Trujillo, J.C. (eds.) ER 2013. LNCS, vol. 8217, pp. 106–120. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-41924-9_10

    Chapter  Google Scholar 

  23. Vessey, I., Galletta, D.: Cognitive fit: An empirical study of information acquisition. Information Systems Research 2, 63–84 (1991)

    Article  Google Scholar 

  24. Scaife, M., Rogers, Y.: External cognition: How do graphical representations work? Int. J. Hum.-Comput. Stud. 45, 185–213 (1996)

    Article  Google Scholar 

  25. Baddeley, A.D.: Working memory. Science 255, 556–559 (1992)

    Article  Google Scholar 

  26. Glenberg, A.M., Langston, W.E.: Comprehension of illustrated text: Pictures help to build mental models. J. Memory Lang. 31, 129–151 (1992)

    Article  Google Scholar 

  27. Johnson-Laird, P.N.: Mental models and human reasoning. Proc. Nat. Acad. Sci. 107, 18243–18250 (2010)

    Article  Google Scholar 

  28. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Patterns in property specifications for finite-state verification. In: International Conference on Software Engineering, pp. 411–420. IEEE (1999)

    Google Scholar 

  29. Di Ciccio, C., Maggi, F.M., Montali, M., Mendling, J.: Resolving inconsistencies and redundancies in declarative process models. Inf. Syst. 64, 425–446 (2017)

    Article  Google Scholar 

  30. Britton, C., Jones, S.: The untrained eye: How languages for software specification support understanding in untrained users. Hum.-Comput. Interact. 14, 191–244 (1999)

    Article  Google Scholar 

  31. Moody, D.L.: The “physics” of notations: towards a scientific basis for constructing visual notations in software engineering. IEEE Trans. Software Eng. 35, 756–779 (2009)

    Article  Google Scholar 

  32. Recker, J., Green, P.: How do individuals interpret multiple conceptual models? a theory of combined ontological completeness and overlap. J. Assoc. Inf. Syst. 20, 1 (2019)

    Google Scholar 

  33. Liberman, N., Klar, Y.: Hypothesis testing in wason’s selection task: social exchange cheating detection or task understanding. Cognition 58, 127–156 (1996)

    Article  Google Scholar 

  34. Wason, P.C.: Reasoning. In: Foss, B. (ed.) New Horizons in Psychology. Penguin, London (1966)

    Google Scholar 

  35. Faul, F., Erdfelder, E., Lang, A.-G., Buchner, A.: G* power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods 39, 175–191 (2007)

    Article  Google Scholar 

  36. Fox, N., Mathers, N.: Empowering research: statistical power in general practice research. Family Pract. 14, 324–329 (1997)

    Article  Google Scholar 

  37. Tversky, B., Zacks, J., Lee, P., Heiser, J.: Lines, blobs, crosses and arrows: diagrammatic communication with schematic figures. In: Anderson, M., Cheng, _.P., Haarslev, V. (eds.) Diagrams 2000. LNCS (LNAI), vol. 1889, pp. 221–230. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44590-0_21

    Chapter  MATH  Google Scholar 

  38. Boekelder, A., Steehouder, M.: Selecting and switching: some advantages of diagrams over tables and lists for presenting instructions. IEEE Trans. Professional Commun. 41, 229–241 (1998)

    Article  Google Scholar 

  39. Haisjackl, C., et al.: Understanding declare models: Strategies, pitfalls, empirical results. Software Syst. Model. 15, 325–352 (2016)

    Article  Google Scholar 

  40. Straub, D.W., Boudreau, M.-C., Gefen, D.: Validation guidelines for is positivist research. Commun. Assoc. Inf. Syst. 13, 380–427 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kathrin Figl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Figl, K., Di Ciccio, C., Reijers, H.A. (2020). Do Declarative Process Models Help to Reduce Cognitive Biases Related to Business Rules?. In: Dobbie, G., Frank, U., Kappel, G., Liddle, S.W., Mayr, H.C. (eds) Conceptual Modeling. ER 2020. Lecture Notes in Computer Science(), vol 12400. Springer, Cham. https://doi.org/10.1007/978-3-030-62522-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-62522-1_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-62521-4

  • Online ISBN: 978-3-030-62522-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics