Skip to main content

Fuzzy Logic-Based COVID-19 and Other Respiratory Conditions Pre-clinical Diagnosis System

  • Conference paper
  • First Online:
Telematics and Computing (WITCOM 2020)

Abstract

The COVID-19 disease, caused by a new coronavirus known as SARS-CoV-2, has recently emerged and caused the death of thousands of persons all around the world. One of the main issues with the disease has been, on one hand, the saturation of the medical personnel, and on the other, the untimely search of medical attention by patients who could confuse the symptoms with other common respiratory conditions with similar symptomatology. Since AI approaches based on machine learning depend on large training datasets, currently neither easily accessible nor reliable, a COVID-19 pre-clinical diagnosis system using a fuzzy inference system is constructed, which is also capable of contrasting it with other respiratory conditions, particularly allergies, common cold and influenza. With the use of this fuzzy inference system, complex decisions in the medical field could be able to be determined more effectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Gorbalenya, A.E., et al.: The species severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nat. Microbiol. 5(4), 536–544 (2020)

    Article  Google Scholar 

  2. Wu, F., et al.: A new coronavirus associated with human respiratory disease in China. Nature 579(7798), 265–269 (2020)

    Article  Google Scholar 

  3. Bulut, C., Kato, Y.: Epidemiology of covid-19. Turkish J. Med. Sci. 50(SI-1), 563–570 (2020)

    Google Scholar 

  4. Wang, C., et al.: A novel coronavirus outbreak of global health concern. The Lancet 395(10223), 470–473 (2020)

    Article  Google Scholar 

  5. WHO: Coronavirus disease (COVID-19) Situation report - 109. Technical report, May, World Health Organization (2020). https://www.who.int/emergencies/diseases/novel-coronavirus-2019

  6. Cascella, M., et al.: Features, evaluation and treatment coronavirus (COVID-19). In: StatPearls, pp. 1–17. StatPearls Publishing (2020)

    Google Scholar 

  7. Allan, G.M., Arroll, B.: Prevention and treatment of the common cold: making sense of the evidence. Can. Med. Assoc. J. 186(3), 190–199 (2014)

    Article  Google Scholar 

  8. Molinari, G., Colombo, G., Celenza, C.: Respiratory allergies: a general overview of remedies, delivery systems, and the need to progress. ISRN Allergy 2014, pp. 1–15 (2014)

    Google Scholar 

  9. Wiselka, M.: Influenza: diagnosis, management, and prophylaxis. BMJ 308(6940), 1341 (1994)

    Article  Google Scholar 

  10. Eccles, R.: Understanding the symptoms of the common cold and influenza. Lancet Infect. Dis. 5(11), 718–725 (2005)

    Article  Google Scholar 

  11. Ding, W., et al.: A layered-coevolution-based attribute-boosted reduction using adaptive quantum-behavior PSO and its consistent segmentation for neonates brain tissue. IEEE Trans. Fuzzy Syst. 26(3), 1177–1191 (2018)

    Article  Google Scholar 

  12. Fu, C., Liu, W., Chang, W.: Data-driven multiple criteria decision making for diagnosis of thyroid cancer. Ann. Oper. Res. 1–30 (2018)

    Google Scholar 

  13. Cao, Z., Lin, C.T.: Inherent fuzzy entropy for the improvement of EEG complexity evaluation. IEEE Trans. Fuzzy Syst. 26(2), 1032–1035 (2018)

    Article  MathSciNet  Google Scholar 

  14. De, S.K., Biswas, R., Roy, A.R.: An application of intuitionistic fuzzy sets in medical diagnosis. Fuzzy Sets Syst. 117(2), 209–213 (2001)

    Article  MATH  Google Scholar 

  15. Rebouças Filho, P.P., et al.: Automatic histologically-closer classification of skin lesions. Comput. Med. Imaging Graph. 68, 40–54 (2018)

    Article  Google Scholar 

  16. Ngan, R.T., Ali, M., Son, L.H.: \(\delta \)-equality of intuitionistic fuzzy sets: a new proximity measure and applications in medical diagnosis. Appl. Intell. 48(2), 499–525 (2018)

    Article  Google Scholar 

  17. Afonso, L.C.S., et al.: A recurrence plot-based approach for Parkinson’s disease identification. Future Gener. Comput. Syst. 94, 282–292 (2019)

    Article  Google Scholar 

  18. Maiers, J.E.: Fuzzy set theory and medicine: the first twenty years and beyond. In: Proceedings of the Annual Symposium on Computer Application in Medical Care, pp. 325–329 (1985)

    Google Scholar 

  19. Zadeh, L.A.: Fuzzy sets. Inf. Control 8(3), 338–353 (1965)

    Article  MATH  Google Scholar 

  20. Kuncheva, L.I., Steimann, F.: Fuzzy diagnosis. Math. Sci. Eng. 144(C), 335–340 (1980)

    Google Scholar 

  21. Phuong, N.H., Kreinovich, V.: Fuzzy logic and its applications in medicine. Int. J. Med. Inf. 62(2–3), 165–173 (2001)

    Article  Google Scholar 

  22. Hughes, C.: The representation of uncertainty in medical expert systems. Inf. Health Soc. Care 14(4), 269–279 (1989)

    Google Scholar 

  23. Xiao, F., Ding, W.: Divergence measure of Pythagorean fuzzy sets and its application in medical diagnosis. Appl. Soft Comput. J. 79(April), 254–267 (2019)

    Article  Google Scholar 

  24. Park, K., Chae, Y., Park, M.: Developing a knowledge-based system to automate the diagnosis of allergic rhinitis. Int. J. Biomed. Soft Comput. Hum. Sci. 2(1), 9–18 (1996)

    Google Scholar 

  25. Samuel, A., Kumar, S.: Intuitionistic fuzzy set with new operators in medical diagnosis. Int. J. Math. Trends Technol. 55(3), 165–169 (2018)

    Article  Google Scholar 

  26. Xiao, F.: A hybrid fuzzy soft sets decision making method in medical diagnosis. IEEE Access 6, 25300–25312 (2018)

    Article  Google Scholar 

  27. Cordón, O.: A historical review of evolutionary learning methods for mamdani-type fuzzy rule-based systems: designing interpretable genetic fuzzy systems. Int. J. Approximate Reasoning 52(6), 894–913 (2011)

    Article  Google Scholar 

  28. Ukhanova, O., Bogomolova, E.: Airborne allergens. In: Allergic Diseases - New Insights, chap. 2, pp. 35–67. InTech, April 2015

    Google Scholar 

  29. Mehta, R.: Allergy and asthma: allergic rhinitis and allergic conjunctivitis. FP Essentials 472, 11–15 (2018). http://www.ncbi.nlm.nih.gov/pubmed/30152668

  30. Bousquet, J., et al.: Allergic rhinitis and its impact on asthma (ARIA) 2008*. Allergy 63(s86), 8–160 (2008)

    Google Scholar 

  31. Bourdin, A., et al.: Upper airway 1: allergic rhinitis and asthma: united disease through epithelial cells. Thorax 64(11), 999–1004 (2009)

    Article  Google Scholar 

  32. Greiner, A.N., et al.: Allergic rhinitis. The Lancet 378(9809), 2112–2122 (2011)

    Article  Google Scholar 

  33. Guerra, S. et al.: Rhinitis is an independent risk factor for developing cough apart from colds among adults. Allergy: Eur. J. Allergy Clin. Immunol. 60(3), 343–349 (2005)

    Google Scholar 

  34. Heikkinen, T., Järvinen, A.: The common cold. Lancet 361(9351), 51–59 (2003)

    Article  Google Scholar 

  35. NIH: Cold, Flu, or Allergy? NIH News in Health (2014). https://newsinhealth.nih.gov/2014/10/cold-flu-or-allergy. Accessed 12 May 2020

  36. Tyrrell, D., Cohen, S., Schilarb, J.: Signs and symptoms in common colds. Epidemiol. Infect. 111(1), 143–156 (1993)

    Article  Google Scholar 

  37. Earn, D.J., Dushoff, J., Levin, S.A.: Ecology and evolution of the flu. Trends Ecol. Evol. 17(7), 334–340 (2002)

    Article  Google Scholar 

  38. American Academy of Allergy Asthma & Immunology: Coronavirus Symptoms, April 2020. https://www.aaaai.org/Aaaai/media/MediaLibrary/Images/Promos/Coronavirus-Symptoms.pdf. Accessed 12 May 2020

  39. Goni, I., et al.: Fuzzy logic applied to inflation control in the Nigerian economy. Mach. Learn. Res. 3(4), 69–72 (2019)

    Google Scholar 

  40. Langari, R.K., et al.: Combined fuzzy clustering and firefly algorithm for privacy preserving in social networks. Expert Syst. Appl. 141, 112968 (2020)

    Article  Google Scholar 

  41. Orozco-del-Castillo, M.G., et al.: Fuzzy logic and image processing techniques for the interpretation of seismic data. J. Geophys. Eng. 8(2), 185–194 (2011)

    Article  Google Scholar 

  42. Molina-Puc, J., Orozco-del-Castillo, M.G., Villafaña-Gamboa, D.F., Gómez-Buenfil, R.A., Guzmán-Tolosa, J.M., Sarabia-Osorio, H.: Fuzzy logic controller for automation of an autonomous irrigation system designed for habanero pepper (Capsicum Chinense Jacq.). In: Mata-Rivera, M.F., Zagal-Flores, R., Barría-Huidobro, C. (eds.) WITCOM 2019. CCIS, vol. 1053, pp. 284–293. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-33229-7_24

    Chapter  Google Scholar 

  43. Rodríguez-Sánchez, J.E., et al.: A fuzzy inference system applied to estimate the error in the recovery of the Green’s function by means of seismic noise correlations. J. Geophys. Eng. 15(5), 2110–2123 (2018)

    Article  Google Scholar 

  44. Ortiz-Alemán, J.C., et al.: Pattern recognition applied to attenuation of multiples in subsalt imaging. Pure Appl. Geophys. 176(6), 2411–2424 (2019)

    Article  Google Scholar 

  45. Andreou, A., Mateou, N., Zombanakis, G.: Soft computing for crisis management and political decision making: the use of genetically evolved fuzzy cognitive maps. Soft Comput. 9(3), 194–210 (2005)

    Article  Google Scholar 

  46. Zapa Perez, E., Cogollo Florez, J.: Fuzzy-BSC methodology for decision making in indemnity area of insurance companies. IEEE Latin Am. Trans. 16(10), 2539–2546 (2018)

    Article  Google Scholar 

  47. Jang, J.S.R., Sun, C.T., Mizutani, E.: Neuro-Fuzzy and Soft Computing: A Computational Approach to Learning and Machine Intelligence. Prentice-Hall, Inc. (1997)

    Google Scholar 

  48. Sugeno, M.: Industrial Applications of Fuzzy Control. Elsevier Science Inc., New York (1985)

    MATH  Google Scholar 

  49. Chung, S.K., et al.: Decision making support system in otolaryngology (part 3) - diagnosis of allergic rhinitis. Korean J. Otorhinolaryngol. 33(1), 104–110 (1990)

    Google Scholar 

  50. Wong, K.W., Gedeon, T., Kóczy, L.: Construction of fuzzy signature from data: an example of SARS pre-clinical diagnosis system. In: IEEE International Conference on Fuzzy Systems, vol. 3, pp. 1649–1654 (2004)

    Google Scholar 

  51. Carnegie Mellon University: COVID Voice Detector. https://cvd.lti.cmu.edu/. Accessed 11 May 2020

  52. Dubois, D., Prade, H.: The three semantics of fuzzy sets. Fuzzy Sets Syst. 90(2), 141–150 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  53. Centers for Disease Control and Prevention: Symptoms of Coronavirus (2020). https://www.cdc.gov/coronavirus/2019-ncov/symptoms-testing/symptoms.html. Accessed 12 May 2020

  54. WHO: Coronavirus (2020). https://www.who.int/health-topics/coronavirus. Accessed 12 May 2020

  55. WHO: Report of the WHO-China Joint Mission on Coronavirus Disease 2019 (COVID-19). Technical report, February, World Health Organization (2020). https://www.who.int/docs/default-source/coronaviruse/who-china-joint-mission-on-covid-19-final-report.pdf

  56. Kim, Y.H., Kim, K.S.: Diagnosis and treatment of allergic rhinitis. J. Korean Med. Assoc. 53(9), 780–790 (2010)

    Article  Google Scholar 

  57. Small, P., Kim, H.: Allergic rhinitis. Allergy Asthma Clin. Immunol. 7(S1), S3 (2011)

    Google Scholar 

  58. Rosas, M.R.: Gripe y resfriado. Clínica y tratamiento. Offarm 27(2), 46–51 (2008)

    Google Scholar 

  59. Mamdani, E.H., Assilian, S.: An experiment in linguistic synthesis with a fuzzy logic controller. In: Readings in Fuzzy Sets for Intelligent Systems, pp. 283–289. Elsevier (1993)

    Google Scholar 

  60. AAAIMX: AAAIMX | COVID-19 Screening Assistant (2020). https://www.aaaimx.org/covid19-assistant/. Accessed 11 Aug 2020

  61. Gilstrap, L.: Validation and verification of expert systems. In: NASA Conference Publication, vol. 3110, p. 241 (1991)

    Google Scholar 

  62. Zhu, N., et al.: A novel coronavirus from patients with pneumonia in China, 2019. N. Engl. J. Med. 382(8), 727–733 (2020)

    Google Scholar 

  63. Mei, X., Lee, H., Diao, K., et al.: Artificial intelligence-enabled rapid diagnosis of patients with covid-19. Nat. Med.26(August), 1224–1228 (2020)

    Google Scholar 

Download references

Acknowledgements

This work was partially supported by projects 20200378, 20201040, 20200259 and EDI grant, by Secretaría de Investigación y Posgrado, Instituto Politécnico Nacional, as well as by project 8285.20-P from Tecnológico Nacional de México/IT de Mérida.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. J. Hernández-Gómez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Orozco-del-Castillo, M.G. et al. (2020). Fuzzy Logic-Based COVID-19 and Other Respiratory Conditions Pre-clinical Diagnosis System. In: Mata-Rivera, M.F., Zagal-Flores, R., Barria-Huidobro, C. (eds) Telematics and Computing. WITCOM 2020. Communications in Computer and Information Science, vol 1280. Springer, Cham. https://doi.org/10.1007/978-3-030-62554-2_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-62554-2_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-62553-5

  • Online ISBN: 978-3-030-62554-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics