Skip to main content

Computer Vision Navigation System for an Indoors Unmanned Aerial Vehicle

  • Conference paper
  • First Online:
Telematics and Computing (WITCOM 2020)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1280))

Included in the following conference series:

  • 814 Accesses

Abstract

This paper presents an approach to a navigation system for a UAV that performs indoors tasks. Outdoors UAVs locates itselfs and navigate using GPS that loose effectiveness when physical barriers exist or electrical noise is present. A computer vision system based in artificial markers ArUco is applied in a UAV in a single board computer Jetson nano attached onboard for eliminating communications losses and increase the response time of the system. The markers provide instructions to the aircraft such as turns and displacements and allows pose estimation. Also is presented the model of a cage for UAV tests that is under construction by the time this paper is released.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Mazur, M., Wisniewski, A., McMillan, J.: PWC global report on the commercial applications of drone technology. PricewaterhouseCoopers, Technical report (2016)

    Google Scholar 

  2. Blösch, M., Weiss, S., Scaramuzza, D., Siegwart, R.: Vision based MAV navigation in unknown and unstructured environments. In: 2010 IEEE International Conference on Robotics and Automation, pp. 21–28. IEEE (2010)

    Google Scholar 

  3. Carrillo, L.R.G., López, A.E.D., Lozano, R., Pégard, C.: Combining stereo vision and inertial navigation system for a quad-rotor UAV. J. Intell. Robot. Syst. 65(1–4), 373–387 (2012)

    Article  Google Scholar 

  4. Apvrille, L., Dugelay, J.L., Ranft, B.: Indoor autonomous navigation of low-cost MAVs using landmarks and 3D perception. In: Proceedings Ocean and Coastal Observation, Sensors and Observing Systems (2013)

    Google Scholar 

  5. Cesetti, A., Frontoni, E., Mancini, A., Zingaretti, P., Longhi, S.: A vision-based guidance system for UAV navigation and safe landing using natural landmarks. J. Intell. Robot. Syst. 57(1–4), 233 (2010)

    Article  Google Scholar 

  6. Oh, H., Won, D.Y., Huh, S.S., Shim, D.H., Tahk, M.J., Tsourdos, A.: Indoor UAV control using multi-camera visual feedback. J. Intell. Robot. Syst. 61(1–4), 57–84 (2011)

    Article  Google Scholar 

  7. Kanellakis, C., Nikolakopoulos, G.: Survey on computer vision for UAVs: current developments and trends. J. Intell. Robot. Syst. 87(1), 141–168 (2017)

    Article  Google Scholar 

  8. Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F.J., Marín-Jiménez, M.J.: Automatic generation and detection of highly reliable fiducial markers under occlusion. Pattern Recogn. 47(6), 2280–2292 (2014)

    Article  Google Scholar 

  9. Garrido-Jurado, S., Muñoz-Salinas, R., Madrid-Cuevas, F., Medina-Carnicer, R.: Generation of fiducial marker dictionaries using mixed integer linear programming. Pattern Recognit. 51, 481–491 (2015)

    Article  Google Scholar 

  10. Romero-Ramirez, F., Muñoz-Salinas, R., Medina-Carnicer, R.: Speeded up detection of squared fiducial markers. Image Vis. Comput. 76, 38–47 (2018)

    Article  Google Scholar 

  11. Hulens, D., Verbeke, J., Goedemé, T.: Choosing the best embedded processing platform for on-board UAV image processing. In: Braz, J., Pettré, J., Richard, P., Kerren, A., Linsen, L., Battiato, S., Imai, F. (eds.) VISIGRAPP 2015. CCIS, vol. 598, pp. 455–472. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-29971-6_24

    Chapter  Google Scholar 

  12. JetsonHacks: Nvidia jetson nano J41 header pinout (2019). https://www.jetsonhacks.com/nvidia-jetson-nano-j41-header-pinout/

  13. OpenCV: Camera calibration and 3D reconstruction (2019). https://docs.opencv.org/3.4/d9/d0c/group__calib3d.html

  14. Sánchez, M.: Luminotecnia. IC Editorial (2010)

    Google Scholar 

  15. LibrePilot: Coptercontrol/cc3d/atom hardware setup (2015). https://opwiki.readthedocs.io/en/latest/user_manual/cc3d/cc3d.html

  16. Lawrence, P.: Jetson Nano Developer Kit. User Guide. Nvidia, March 2019

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Roman Ibarra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ibarra, R.R., Márquez, M.V., Martínez, G., Hernández, V. (2020). Computer Vision Navigation System for an Indoors Unmanned Aerial Vehicle. In: Mata-Rivera, M.F., Zagal-Flores, R., Barria-Huidobro, C. (eds) Telematics and Computing. WITCOM 2020. Communications in Computer and Information Science, vol 1280. Springer, Cham. https://doi.org/10.1007/978-3-030-62554-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-62554-2_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-62553-5

  • Online ISBN: 978-3-030-62554-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics