Skip to main content

Integrating Virtual Reality in a Lab Based Learning Environment

  • Conference paper
  • First Online:
Virtual Reality and Augmented Reality (EuroVR 2020)

Abstract

In engineering education, practical laboratory experience is essential and typically universities own expensive laboratory facilities that are deeply embedded in their curricula. Based on a comprehensive requirements analysis in a design based research approach, we have created a virtual clone of an existing RFID (radio-frequency identification) laboratory with the aim of integrating it into an existing teaching and learning scenario. The resulting application prepares students for real experiments by guiding them through the process assisted by an avatar. We have had our application tested in a qualitative evaluation by students as well as experts and we assess which design decisions have a positive impact on the learning experience. Our results suggest that the appearance of the environment, the avatar and the interactions of our virtual reality application have a strong motivational character but a closer content-wise link of the virtual and real experiments is crucial for students to perceive the application as part of the learning environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://www.blender.org/.

  2. 2.

    https://www.vive.com/.

References

  1. Abulrub, A.G., Attridge, A.N., Williams, M.A.: Virtual reality in engineering education: the future of creative learning. In: 2011 IEEE Global Engineering Education Conference (EDUCON), pp. 751–757 (2011)

    Google Scholar 

  2. Acatech: Kompetenzentwicklungsstudie Industrie 4.0: Erste Ergebnisse und Schlussfolgerungen. München (2016)

    Google Scholar 

  3. Bell, J.T., Fogler, H.S.: Ten steps to developing virtual reality applications for engineering education. In: ASEE Annual Conference Proceedings, pp. 1–8 (1997)

    Google Scholar 

  4. Bell, J.T., Fogler, H.S., Arbor, A.: The investigation and application of virtual reality as an educational tool. In: Proceedings of the American Society for Engineering Education, vol. 2513, pp. 1–11 (1995)

    Google Scholar 

  5. Bell, J.T., Scott Fogler, H.: Vicher: a virtual reality based educational module for chemical reaction engineering. Comput. Appl. Eng. Educ. 4(4), 285–296 (1996)

    Article  Google Scholar 

  6. Berg, L.P., Vance, J.M.: Industry use of virtual reality in product design and manufacturing: a survey. Virtual Reality 21(1), 1–17 (2016). https://doi.org/10.1007/s10055-016-0293-9

    Article  Google Scholar 

  7. Brooks, F.P.: What’s real about virtual reality? IEEE Comput. Graphics Appl. 19(6), 16–27 (1999)

    Article  Google Scholar 

  8. Burghardt, M., Ferdinand, P., Pfeiffer, A., Reverberi, D., Romagnoli, G.: Integration of new technologies and alternative methods in laboratory-based scenarios. In: Auer, M.E., May, D. (eds.) REV 2020. AISC, vol. 1231, pp. 488–507. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-52575-0_40

    Chapter  Google Scholar 

  9. Burmester, M., Mast, M., Jäger, K., Homans, H.: Valence method for formative evaluation of user experience. In: Proceedings of the 8th ACM Conference on Designing Interactive Systems, DIS 2010, pp. 364–367. Association for Computing Machinery, New York (2010)

    Google Scholar 

  10. Carruth, D.W.: Virtual reality for education and workforce training. In: ICETA 2017–15th IEEE International Conference on Emerging eLearning Technologies and Applications, Proceedings (2017)

    Google Scholar 

  11. Chittaro, L., Buttussi, F.: Assessing knowledge retention of an immersive serious game vs. a traditional education method in aviation safety. IEEE Trans. Vis. Comput. Graph. 21(4), 529–538 (2015)

    Article  Google Scholar 

  12. Feisel, L.D., Rosa, A.J.: The role of the laboratory in undergraduate engineering education. J. Eng. Educ. 94, 121–130 (2005)

    Article  Google Scholar 

  13. Höhner, N., Rodewald, J., Mints, M.O., Kammerlohr, V.: The next step of digital laboratories: connecting real and virtual world. In: The 17th International Conference on Virtual-Reality Continuum and Its Applications in Industry, VRCAI 2019. Association for Computing Machinery, New York (2019)

    Google Scholar 

  14. Kerres, M.V. (ed.): Mediendidaktik: Konzeption und Entwicklung mediengestützter Lernangebote. Oldenbourg, München, 4, überarb. und aktualisierte aufl. edn. (2013), für Studenten der Informatik und Pädagogik sowie Entwickler von Bildungsmedien. - Literaturverz. S. [515] - 537

    Google Scholar 

  15. Laugwitz, B., Held, T., Schrepp, M.: Construction and evaluation of a user experience questionnaire. In: Holzinger, A. (ed.) USAB 2008. LNCS, vol. 5298, pp. 63–76. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-89350-9_6

    Chapter  Google Scholar 

  16. Psotka, J.: Immersive training systems: virtual reality and education and training. Instr. Sci. 23(1), 404–431 (1995)

    Google Scholar 

  17. Schnell, C.: lautes denken als qualitative methode zur untersuchung der validität von testitems - erkenntnisse einer studie zur diagnose des ökonomischen fachwissens von schülerinnen und schülern der sekundarstufe i. ZföB Zeitschrift für ökonomische Bildung Heft 5, Jahrgang 2016, pp. 26–49 (2016)

    Google Scholar 

  18. Schrepp, M., Hinderks, A., Thomaschewski, J.: Construction of a benchmark for the user experience questionnaire (UEQ). Int. J. Interact. Multimedia Artif. Intell. 4, 40–44 (2017)

    Google Scholar 

  19. Tang, Y.M., Au, K.M., Lau, H.C.W., Ho, G.T.S., Wu, C.H.: Evaluating the effectiveness of learning design with mixed reality (MR) in higher education. Virtual Reality (2020). https://doi.org/10.1007/s10055-020-00427-9

    Article  Google Scholar 

  20. Tsai, R.: A versatile camera calibration technique for high-accuracy 3D machine vision metrology using off-the-shelf TV cameras and lenses. IEEE J. Robot. Autom. 3(4), 323–344 (1987)

    Article  Google Scholar 

  21. Villagrasa, S., Fonseca, D., Durán, J.: Teaching case: applying gamification techniques and virtual reality for learning building engineering 3D arts. In: ACM International Conference Proceeding Series, pp. 171–177 (2014)

    Google Scholar 

  22. Wang, F., Xu, X., Feng, W., Vesga, J.B., Liang, Z., Murrell, S.: Towards an immersive guided virtual reality microfabrication laboratory training system. In: 2020 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW), pp. 796–797 (2020)

    Google Scholar 

  23. Wang, P., Wu, P., Wang, J., Chi, H.L., Wang, X.: A critical review of the use of virtual reality in construction engineering education and training. Int. J. Environ. Res. Public Health 15, 1204 (2018)

    Article  Google Scholar 

  24. Winther, F., Ravindran, L., Svendsen, K.P., Feuchtner, T.: Design and evaluation of a VR training simulation for pump maintenance. In: Extended Abstracts of the 2020 CHI Conference on Human Factors in Computing Systems Extended Abstracts, CHI 2020, pp. 1–8. Association for Computing Machinery, New York (2020)

    Google Scholar 

  25. Xiao, X., Zhao, S., Meng, Y., Soghier, L., Zhang, X., Hahn, J.: A physics-based virtual reality simulation framework for neonatal endotracheal intubation. In: 2020 IEEE Conference on Virtual Reality and 3D User Interfaces (VR), pp. 557–565 (2020)

    Google Scholar 

  26. Zhao, J., LaFemina, P., Carr, J., Sajjadi, P., Wallgrün, J.O., Klippel, A.: Learning in the field: comparison of desktop, immersive virtual reality, and actual field trips for place-based stem education. In: 2020 IEEE Conference on Virtual Reality and 3D User Interfaces (VR), pp. 893–902 (2020)

    Google Scholar 

  27. Zubía, J.G., Alves, G.: Using remote labs in education: two little ducks in remote experimentation (2011)

    Google Scholar 

  28. Zvacek, S.: Preface: University of Kansas, (USA). In: Zubía, J.G., Alves, G. (eds.) Using Remote Labs in Education: Two Little Ducks in Remote Experimentation (2011)

    Google Scholar 

Download references

Acknowledgement

Funded by the German Federal Ministry of Education and Research (BMBF), grants no. 16DHB2115 “DigiLab4U”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nils Höhner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Höhner, N. et al. (2020). Integrating Virtual Reality in a Lab Based Learning Environment. In: Bourdot, P., Interrante, V., Kopper, R., Olivier, AH., Saito, H., Zachmann, G. (eds) Virtual Reality and Augmented Reality. EuroVR 2020. Lecture Notes in Computer Science(), vol 12499. Springer, Cham. https://doi.org/10.1007/978-3-030-62655-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-62655-6_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-62654-9

  • Online ISBN: 978-3-030-62655-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics