Abstract
Exploiting extended reality technologies in laboratory training enhances both teaching and learning experiences. It complements the existing traditional learning/teaching methods related to science, technology, engineering, arts and mathematics. In this work, we use extended reality technologies to create an interactive learning environment with dynamic educational content. The proposed learning environment can be used by students of all levels of education, to facilitate laboratory-based understanding of scientific concepts. We introduce a low-cost and user-friendly multi-platform system for mobile devices which, when coupled with edutainment dynamics, simulation, extended reality and natural hand movements sensing technologies such as hand gestures with virtual triggers, is expected to engage users and prepare them efficiently for the actual on-site laboratory experiments. The proposed system is evaluated by a group of experts and the results are analyzed in detail, indicating the positive attitude of the evaluators towards the adoption of the proposed system in laboratory educational procedures. We conclude the paper by highlighting the capabilities of extended reality and dynamic content management in educational microscopy procedures.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Covid-19 of the SARS-CoV-2 virus, which was first detected in the Chinese city of Wuhan at the end of 2019.
- 2.
Deployment as well as all the additional support material: http://www.ceti.gr/chairiq/xrlabs/.
References
Sypsas, A., Kalles, D.: Virtual laboratories in biology, biotechnology and chemistry education: a literature review. In: Proceedings of the 22nd Pan-Hellenic Conference on Informatics, PCI 2018, p. 70. ACM, New York (2018)
Nersessian, N.J.: Conceptual change in science and in science education. Synthese (1989). https://doi.org/10.1007/BF00869953
Rambli, D.R.A., Nayan, M.Y., Sulaiman, S.: A Portable Augmented Reality Lab. Ist Int. Malaysian Educ. Technol. Conv. (2007)
Becerra, D.A.I., et al.: Evaluation of a gamified 3D virtual reality system to enhance the understanding of movement in physics. In: CSEDU 2017 - Proceedings of the 9th International Conference on Computer Supported Education, no. 1, pp. 395–401. INSTICC, SciTePress (2017)
Shin, J.M., Jin, K., Kim, S.Y.: Investigation and evaulation of a virtual reality vocational training system for general lathe. In: CSEDU 2019 - Proceedings of the 11th International Conference on Computer Supported Education, no. 2, pp. 440–445. INSTICC, SciTePress (2019)
Bogusevschi, D., Muntean, G.M.: Water cycle in nature – an innovative virtual reality and virtual lab: Improving learning experience of primary school students. In: CSEDU 2019 - Proceedings of the 11th International Conference on Computer Supported Education, no. 1, pp. 304–309. INSTICC, SciTePress (2019)
Kiourt, C., et al.: XRLabs: extended reality interactive laboratories. In: Proceeding of the 12th International Conference on Computer Supported Education (CSEDU 2020) (2020)
Paxinou, E., Zafeiropoulos, V., Sypsas, A., Kiourt, C., Kalles, D.: Assessing the impact of virtualizing physical labs. In: 27th EDEN Annual Conference, European Distance and E-Learning Network, pp. 17–20 (2018)
Heradio, R., De La Torre, L., Galan, D., Cabrerizo, F.J., Herrera-Viedma, E., Dormido, S.: Virtual and remote labs in education: a bibliometric analysis. Comput. Educ. 98, 14–38 (2016). https://doi.org/10.1016/j.compedu.2016.03.010
Karakasidis, T.: Virtual and remote labs in higher education distance learning of physical and engineering sciences. In: IEEE Global Engineering Education Conference, EDUCON, pp. 798–807 (2013)
Bonde, M.T., et al.: Improving biotech education through gamified laboratory simulations. Nat. Biotechnol. 32(7), 694–697 (2014). https://doi.org/10.1038/nbt.2955
Kiourt, C., Koutsoudis, A., Pavlidis, G.: DynaMus: a fully dynamic 3D virtual museum framework. J. Cult. Heritage 22, 984–991 (2016). https://doi.org/10.1016/j.culher.2016.06.007
de Vries, L.E., May, M.: Virtual laboratory simulation in the education of laboratory technicians–motivation and study intensity. Biochem. Mol. Biol. Educ. 47(3), 257–262 (2019). https://doi.org/10.1002/bmb.21221
Okan, Z.: Edutainment: is learning at risk? Br. J. Educ. Technol. 34, 255–264 (2003). https://doi.org/10.1111/1467-8535.00325
Corona, F., Cozzarelli, C., Palumbo, C., Sibilio, M.: Information technology and edutainment: education and entertainment in the age of interactivity. Int. J. Digit. Lit. Digit. Competence 4, 12–18 (2013). https://doi.org/10.4018/jdldc.2013010102
Aksakal, N.: Theoretical view to the approach of the edutainment. Procedia Soc. Behav. Sci. 186, 1232–1239 (2015). https://doi.org/10.1016/j.sbspro.2015.04.081
Anikina, O.V., Yakimenko, E.V.: Edutainment as a modern technology of education. Procedia Soc. Behav. Sci. 166, 475–479 (2015). https://doi.org/10.1016/j.sbspro.2014.12.558
Brown, A., Green, T.: Virtual reality: low-cost tools and resources for the classroom. TechTrends 60(5), 517–519 (2016). https://doi.org/10.1007/s11528-016-0102-z
Zagoranski, S., Divjak, S.: Use of augmented reality in education. In: IEEE Region 8 EUROCON 2003: Computer as a Tool - Proceedings, no. 2, pp. 339–342 (2003)
Zafeiropoulos, V., Kalles, D., Sgourou, A.: Adventure-style game-based learning for a biology lab. In: Proceedings - IEEE 14th International Conference on Advanced Learning Technologies, ICALT 2014, pp. 665–667 (2014)
Estapa, A., Nadolny, L.: The effect of an augmented reality enhanced mathematics lesson on student achievement and motivation. J. STEM Educ. 16(3), 40 (2015)
Ferrer-Torregrosa, J., Torralba, J., Jimenez, M.A., GarcÃa, S., Barcia, J.M.: ARBOOK: development and assessment of a tool based on augmented reality for anatomy. J. Sci. Educ. Technol. 24(1), 119–124 (2014). https://doi.org/10.1007/s10956-014-9526-4
Ma, J., Nickerson, J.V.: Hands-on, simulated, and remote laboratories: a comparative literature review. ACM Comput. Surv. 38(3) (2006). https://doi.org/10.1145/1132960.1132961
Makarius, E.E.: Edutainment: using technology to enhance the management learner experience. Manag. Teach. Rev. 2(1), 17 (2017). https://doi.org/10.1177/2379298116680600
Mann, D.: Serious play. Teach. Coll. Rec. 97(3), 419–469 (1996). https://doi.org/10.1075/japc.13.2.02cha
Lalos, S., Kiourt, C., Kalles, D., Kalogeras, A.: Personalized interactive edutainment in extended reality (XR) laboratories. ERCIM News Educ. Technol. 120, 29–30 (2020)
Siltanen, S.: Theory and applications of marker-based augmented reality (2012)
Walton, D.R., Steed, A.: Accurate real-time occlusion for mixed reality. In: Proceedings of the ACM Symposium on Virtual Reality Software and Technology, VRST, pp. 1–10 (2017)
LaViola, J.J.: A discussion of cybersickness in virtual environments. ACM SIGCHI Bull. 32, 47–56 (2000). https://doi.org/10.1145/333329.333344
Weech, S., Kenny, S., Barnett-Cowan, M.: Presence and cybersickness in virtual reality are negatively related: a review (2019)
Watson, J.B.: Psychology as the behaviourist views it. Psychol. Rev. (1913). https://doi.org/10.1037/h0074428
Piaget, J.: Origins of Intelligence in the Child. Routledge and Kegan Paul, London (1936)
Diederen, J., Gruppen, H., Hartog, R., Voragen, A.G.J.: Design and evaluation of digital learning material to support acquisition of quantitative problem-solving skills within food chemistry. J. Sci. Educ. Technol. 14, 495–507 (2005). https://doi.org/10.1007/s10956-005-0224-0
de Jong, T.: Cognitive load theory, educational research, and instructional design: some food for thought. Instr. Sci. 38, 105–134 (2010). https://doi.org/10.1007/s11251-009-9110-0
De Paiva Guimarães, M., Martins, V.F.: A checklist to evaluate augmented reality applications. In: Proceedings - 2014 16th Symposium on Virtual and Augmented Reality, SVR, pp. 45–52 (2014)
Acknowledgments
This work is supported by the project XRLabs -Virtual laboratories using interactive technologies in virtual, mixed and augmented reality environments (MIS 5038608) implemented under the Action for the Strategic Development on the Research and Technological Sector, co-financed by national funds through the Operational program of Western Greece 2014–2020 and European Union funds (European Regional Development Fund).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Theodoropoulou, H.G. et al. (2020). Exploiting Extended Reality Technologies for Educational Microscopy. In: Bourdot, P., Interrante, V., Kopper, R., Olivier, AH., Saito, H., Zachmann, G. (eds) Virtual Reality and Augmented Reality. EuroVR 2020. Lecture Notes in Computer Science(), vol 12499. Springer, Cham. https://doi.org/10.1007/978-3-030-62655-6_9
Download citation
DOI: https://doi.org/10.1007/978-3-030-62655-6_9
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-62654-9
Online ISBN: 978-3-030-62655-6
eBook Packages: Computer ScienceComputer Science (R0)