Skip to main content

Controller Design Based on LQR for Rotational Inverted Pendulum

  • Conference paper
  • First Online:
The 2020 International Conference on Machine Learning and Big Data Analytics for IoT Security and Privacy (SPIOT 2020)

Abstract

The rotational inverted pendulum is an unstable system with multiple variables. This study achieve the stability control of rotational inverted pendulum based on the LQR optimal control method. According to Lagrange dynamics equation modeling rotating pendulum. The paper makes a study of the weighted matrix Q and R. Designed controller and simulation according to the mathematical model by the Matlab. Results show the LQR method can achieve the stable control of rotational inverted pendulum.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhao, X., Zhang, L., Shi, P., Karimi, H.R.: Novel stability criteria for T-S fuzzy systems. IEEE Trans. Fuzzy Syst. 21(6), 1–11 (2013)

    Article  Google Scholar 

  2. Bugeja, M.: Non-linear swing-up and stabilizing control of an inverted pendulum system, In: EUROCON Ljubljana, Slovenia (2003)

    Google Scholar 

  3. Craig, K., Awtar, S.: Inverted pendulum systems: rotary and arm-driven a mechatronic system design case study. Mechatronics 12, 357–370 (2001)

    Google Scholar 

  4. Shiriaev, A.S., Friesel, A., Perram, J., Pogromsky, A.: On stabilization of rotational modes of an invertedpendulum. In: Proceedings of the 39th IEEE Conference on Decision and Control, Sydney, NSW Australia, vol. 12, no. 5, pp. 5047–5052 (2000)

    Google Scholar 

  5. Krishen, J., Becerra, V.M.: Efficient fuzzy control of a rotary inverted pendulum based on LQR mapping. In: IEEE International Symposium on Intelligent Control, Germany, pp. 2701–2706 (2006)

    Google Scholar 

  6. Mrad, F., El-Hassan, N., Mahmoud, S.E.H., Alawieh, B., Adlouni, F.: Real-time control of free-standing cart-mounted inverted pendulum using LabVIEW RT. In: Conference Record of the 2000 IEEE Industry Applications Conference, Rome, Italy, vol. 10, no. 2, pp. 1291–1298 (2000)

    Google Scholar 

  7. Park, J.I., Lee, S.G.: Synthesis of control inputs for simultaneous control of angle and position of inverted pendulum. In: Proceedings of 1996 4th International Workshop on Advanced Motion Control, Mie, Japan, vol. 3, no. 2, pp. 619–624 (1996)

    Google Scholar 

  8. Rotary Inverted Pendulum User Guides & Laboratories. Quanser Inc. (2003)

    Google Scholar 

  9. Ang, K.H., Chong, G., Li, Y.: LQR control system analysis, design, and technology. IEEE Trans. Control Syst. Technol. 13(4), 559–576 (2005)

    Google Scholar 

  10. Du, G., Huang, N., Wu, G.: The rotational inverted-pendulum based on DSP controller. In: Proceedings of the 4th World Congress on Intelligent Control and Automation, Shanghai, China, vol. 7, no. 4, pp. 3101–3105 (2002)

    Google Scholar 

Download references

Acknowledgements

This work was supported by Liaoning Natural Science Foundation under Grant No. 20180550189 and No. 2019-ZD-0491

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, D., Wang, X., Zhang, L. (2021). Controller Design Based on LQR for Rotational Inverted Pendulum. In: MacIntyre, J., Zhao, J., Ma, X. (eds) The 2020 International Conference on Machine Learning and Big Data Analytics for IoT Security and Privacy. SPIOT 2020. Advances in Intelligent Systems and Computing, vol 1283. Springer, Cham. https://doi.org/10.1007/978-3-030-62746-1_52

Download citation

Publish with us

Policies and ethics