Skip to main content

Handheld 3D Mobile Scanner (SLAM): Data Simulation and Acquisition for BIM Modelling

  • Conference paper
  • First Online:
R3 in Geomatics: Research, Results and Review (R3GEO 2019)

Abstract

Nowadays, the availability of fast data acquisition systems based on mobile and handheld laser scanning platform are increasing in popularity due to their rapidity in data acquisition of large areas. BIM and HBIM based modelling can primary benefit of this new acquisition methods speeding up the so called “Scan-to-BIM” procedure. However, point clouds derived from Mobile Mapping Systems (MMS) compared to traditional static laser scanning acquisition presents some disadvantages: (i) point clouds are more noisy, (ii) generally less dense and (iii) some drift effects can be presents inside the data due to data registration. For those reason, in order to obtain a point cloud to be effectively used for modelling purposes a careful planning of the acquisition has to be taken into account. This paper, presents a methodology for optimal MMS path design according to some predefined target in terms of point density and point cloud completeness. In order to optimize the scanning path a simulation is carried out to define the best scanning configuration. In this paper the developed methodology is tested on a real case study: the outdoor of the main pavilion of the Politecnico di Milano – Polo Territoriale di Lecco.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ramos, M.M., Remondino, F.: Data fusion in cultural heritage-a review. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 40(5), 359 (2015)

    Article  Google Scholar 

  2. Bentkowska-Kafel, A., MacDonald, L.: Digital Techniques for Documenting and Preserving Cultural Heritage. ISD LLC (2018)

    Google Scholar 

  3. Salvini, R., Riccucci, S., Gullì, D., Giovannini, R., Vanneschi, C., Francioni, M.: Geological application of UAV photogrammetry and terrestrial laser scanning in marble quarrying (Apuan Alps, Italy). In: Lollino, G., Manconi, A., Guzzetti, F., Luino, F., Culshaw, M., Bobrowsky, P. (eds.) Engineering Geology for Society and Territory - Volume 5, pp. 979–983. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-09048-1_188

    Chapter  Google Scholar 

  4. Galantucci, L.M., Piperi, E., Lavecchia, F., Zhavo, A.: Semi-automatic low cost 3D laser scanning systems for reverse engineering. Procedia CIRP 28, 94–99 (2015)

    Google Scholar 

  5. Brumana, R., et al.: Generative HBIM modelling to embody complexity (LOD, LOG, LOA, LOI): surveying, preservation, site intervention—the Basilica di Collemaggio (L’Aquila). Appl. Geomat. 10(4), 545–567 (2018)

    Article  Google Scholar 

  6. Boehler, W., Vicent, M.B., Marbs, A.: Investigating laser scanner accuracy. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 34(Part 5), 696–701 (2003)

    Google Scholar 

  7. Fujimoto, K., Beniyama, F., Moriya, T., Nakayama, Y.: Reconstruction of 3D indoor model by scalable sensing using mobile robot. In: Three-Dimensional Image Capture and Applications 2008, vol. 6805, p. 68050I. International Society for Optics and Photonics (2008)

    Google Scholar 

  8. Low, K.L.: View Planning for Range Acquisition of Indoor Environments, p. 0985. University of North Carolina at Chapel Hill (2006)

    Google Scholar 

  9. Blaer, P.S., Allen, P.K.: View planning for automated site modeling. In: Proceedings 2006 IEEE International Conference on Robotics and Automation, ICRA 2006, pp. 2621–2626. IEEE (2006)

    Google Scholar 

  10. Nagatani, K., Matsuzawa, T., Yoshida, K.: Scan-point planning and 3-D map building for a 3-D laser range scanner in an outdoor environment. In: Howard, A., Iagnemma, K., Kelly, A. (eds.) Field and Service Robotics. STAR, vol. 62, pp. 207–217. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13408-1_19

    Chapter  Google Scholar 

  11. Ahn, J., Wohn, K.: Interactive scan planning for heritage recording. Multimed. Tools Appl. 75(7), 3655–3675 (2015). https://doi.org/10.1007/s11042-015-2473-0

    Article  Google Scholar 

  12. Meng, Z., Sun, H., Qin, H., Chen, Z., Zhou, C., Ang, M.H.: Intelligent robotic system for autonomous exploration and active SLAM in unknown environments. In: 2017 IEEE/SICE International Symposium on System Integration (SII), pp. 651–656. IEEE (2017)

    Google Scholar 

  13. Díaz-Vilariño, L., Frías, E., Previtali, M., Scaioni, M., Balado, J.: Scan planning optimization for outdoor archaeological sites. In: 2nd International Conference of Geomatics and Restoration, GEORES 2019, vol. 42, no. 2, pp. 489–494. Copernicus GmbH (2019)

    Google Scholar 

  14. Garrido, S., Moreno, L., Blanco, D., Jurewicz, P.: Path planning for mobile robot navigation using voronoi diagram and fast marching. Int. J. Robot. Autom. 2(1), 42–64 (2011)

    Google Scholar 

  15. Bechtold, S., Höfle, B.: Helios: a multi-purpose lidar simulation framework for research, planning and training of laser scanning operations with airborne, ground-based mobile and stationary platforms. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 3(3) (2016)

    Google Scholar 

  16. Fugazza, D., et al.: Combination of UAV and terrestrial photogrammetry to assess rapid glacier evolution and map glacier hazards. Nat. Haz. Earth Syst. Sci. 18, 1055–1071 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

Research leading to this results is partially funded by Regione Lombardia - Bando “Smart Living: integrazione fra produzione servizi e tecnologia nella filiera costruzioni-legno-arredo-casa” approvato con d.d.u.o. n.11672 dell’15 novembre 2016 nell’ambito del progetto “HOMeBIM liveAPP: Sviluppo di una Live APP multi-utente della realtà virtuale abitativa 4D per il miglioramento di comfort-efficienza-costi, da una piattaforma cloud che controlla nel tempo il flusso BIM-sensori – ID 379270”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mattia Previtali .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Previtali, M., Banfi, F., Brumana, R. (2020). Handheld 3D Mobile Scanner (SLAM): Data Simulation and Acquisition for BIM Modelling. In: Parente, C., Troisi, S., Vettore, A. (eds) R3 in Geomatics: Research, Results and Review. R3GEO 2019. Communications in Computer and Information Science, vol 1246. Springer, Cham. https://doi.org/10.1007/978-3-030-62800-0_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-62800-0_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-62799-7

  • Online ISBN: 978-3-030-62800-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics