Skip to main content

Processing Very High-Resolution Satellite Images for Individual Tree Identification with Local Maxima Method

  • Conference paper
  • First Online:
R3 in Geomatics: Research, Results and Review (R3GEO 2019)

Abstract

In the last decades, different Remote Sensing (RS) techniques and instruments were developed and utilized to manage and monitor the natural and semi-natural resources. Increasing the number of the sensors with the high spatial and spectral resolution, the remote sensing techniques and the Geographic Information System (GIS), provide more and detailed information, required for the precision agriculture tasks, and support, where possible, the decision-making process. The aim of this study is to develop a chain process, to obtain by using Earth Observation (EO) data, detailed information about the detection of the olive tree crowns. The Individual Tree Crown (ITC) detection process is implemented in a semi-automatic workflow based on Local Maxima Filter (LMF) applied on the Digital Aerial image and WorldView-2 (WV-2) images. The results indicate that the image data characteristics play a fundamental role to detect trees by EO data. For both datasets, the results show a higher accuracy achieved with the NDVI (Normalized Difference Vegetation Index), highlighting the spectral characteristics of the vegetation in the red and InfraRed domain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. González, J., Galindo, C., Arevalo, V., Ambrosio, G.: Applying image analysis and probabilistic techniques for counting olive trees in high-resolution satellite images. In: Blanc-Talon, J., Philips, W., Popescu, D., Scheunders, P. (eds.) ACIVS 2007. LNCS, vol. 4678, pp. 920–931. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74607-2_84

    Chapter  Google Scholar 

  2. Ke, Y., Quackenbush, L.J.: A review of methods for automatic individual tree-crown detection and delineation from passive remote sensing. Int. J. Remote Sens. 321(7), 4725–4747 (2011). https://doi.org/10.1080/01431161.2010.494184

    Article  Google Scholar 

  3. Heenkenda, M.K., Joyce, K.E., Maier, S.W.: Mangrove tree crown delineation from high-resolution imagery. Photogram. Eng. Remote Sens. 81(6), 471–479 (2015). https://doi.org/10.14358/PERS.81.6.471

  4. Ke, Y., Quackenbush, L.J.: Comparison of individual tree crown detection and delineation methods. In: Proceedings of 2008 ASPRS Annual Conference, 2 May 2008, Portland, Oregon, USA (2008)

    Google Scholar 

  5. Ardila Lopez, J.P.: Object-based methods for mapping and monitoring of urban trees with multitemporal image analysis. Ph.D. dissertation, University of Twente Faculty of Geo-Information and Earth Observation (ITC), Twente, Netherlands (2012)

    Google Scholar 

  6. Pouliot, D.A., King, D.J., Bell, F.W., Pitt, D.G.: Automated tree crown detection and delineation in high-resolution digital camera imagery of coniferous forest regeneration. Remote Sens. Environ. 82(2), 322–334 (2002). https://doi.org/10.1016/S0034-4257(02)00050-0

    Article  Google Scholar 

  7. Gougeon, F.A., Leckie, D.G.: The individual tree crown approach applied to Ikonos images of a coniferous plantation area. Photogram. Eng. Remote Sens. 72(11), 1287–1297 (2006). https://doi.org/10.14358/PERS.72.11.1287

  8. Masson, J.: Use of very high resolution airborne and spaceborne imagery: a key role in the management of olive, nuts and vineyard schemes in the frame of the common agricultural policy of the European union. In: Proceedings of Information and Technology for Sustainable Fruit and Vegetable Production, 12–16 September 2005, FRUTIC 05, Montpellier, France, pp. 709–718 (2005)

    Google Scholar 

  9. Karantzalos, K.G., Argialas, D.P.: Towards automatic olive tree extraction from satellite imagery. In: Geo-Imagery Bridging Continents, 12–23 July 2004, XXth ISPRS Congress, Istanbul, Turkey, pp. 12–23 (2004)

    Google Scholar 

  10. Bazi, Y., Al-Sharari, H., Melgani, F.: An automatic method for counting olive trees in very high spatial remote sensing images. In: Geoscience and Remote Sensing Symposium, 2009 IEEE International, 12–17 July 2009, IGARSS 2009, Cape Town, South Africa, pp. II-125–II-128 (2009). https://doi.org/10.1109/IGARSS.2009.5418019

  11. Ceylan, N., Unal, E., Masson, J.: A case study of developing an olive tree database for Turkey. Photogram. Eng. Remote Sens. 75(12), 1397–1405 (2009). https://doi.org/10.14358/PERS.75.12.1397

  12. Daliakopoulos, I.N., Grillakis, E.G., Koutroulis, A.G., Tsanis, I.K.: Tree crown detection on multispectral VHR satellite imagery. Photogram. Eng. Remote Sens. 75(10), 1201–1211 (2009). https://doi.org/10.14358/PERS.75.10.1201

  13. Santoro, F., Tarantino, E., Figorito, B., Gualano, S., D’Onghia, A.M.: A tree counting algorithm for precision agriculture tasks. Int. J. Digit. Earth 6(1), 94–102 (2013). https://doi.org/10.1080/17538947.2011.642902

    Article  Google Scholar 

  14. Caruso, T., Rühl, J., Sciortino, R., Marra, F.P., La Scalia, G.: Automatic detection and agronomic characterization of olive groves using high-resolution imagery and LIDAR data. In: SPIE Remote Sensing. International Society for Optics and Photonics, p. 92391F (2014). https://doi.org/10.1117/12.2065952

  15. Díaz-Varela, R.A., de la Rosa, R., León, L., Zarco-Tejada, P.J.: High-resolution airborne UAV imagery to assess olive tree crown parameters using 3D photo reconstruction: application in breeding trials. Remote Sens. 7(4), 4213–4232 (2015). https://doi.org/10.3390/rs70404213

    Article  Google Scholar 

  16. Ozdarici-Ok, A.: Automatic detection and delineation of citrus trees from VHR satellite imagery. Int. J. Remote Sens. 36(17), 4275–4296 (2015). https://doi.org/10.1080/01431161.2015.1079663

    Article  Google Scholar 

  17. Shoji, S., Takahashi, T.: Environmental and agricultural significance of volcanic ash soils. Glob. Environ. Res. 6(2), 113–135 (2002). English Edition

    Google Scholar 

  18. Belfiore, O.R., Parente, C.: Orthorectification and pan-sharpening of worldview-2 satellite imagery to produce high resolution coloured ortho-photos. Mod. Appl. Sci. 9(9), 122–130 (2015). https://doi.org/10.5539/mas.v9n9p122

    Article  Google Scholar 

  19. Wolf, A.: Using WorldView 2 Vis-NIR MSI imagery to support land mapping and feature extraction using normalized difference index ratios. In: DigitalGlobe 8-Band Research Challenge, pp. 1–13 (2010). http://www.harrisgeospatial.com/portals/0/pdfs/envi/8_bands_Antonio_Wolf.pdf. Accessed 15 Mar 2018

  20. Maglione, P., Parente, C., Vallario, A.: Coastline extraction using high resolution WorldView-2 satellite imagery. Eur. J. Remote Sens. 47, 685–699 (2014). https://doi.org/10.5721/EuJRS20144739

    Article  Google Scholar 

  21. Aguilar, M.A., Bianconi, F., Aguilar, F.J., Fernández, I.: Object-based greenhouse classification from GeoEye-1 and WorldView-2 stereo imagery. Remote Sens. 6(5), 3554–3582 (2014). https://doi.org/10.3390/rs6053554

    Article  Google Scholar 

  22. Figorito, B., Tarantino, E., Balacco, G., Fratino, U.: An object-based method for mapping ephemeral river areas from WorldView-2 satellite data. In: SPIE Remote Sensing, International Society for Optics and Photonics, p. 85310B (2012). https://doi.org/10.1117/12.974689

  23. DigitalGlobe. https://mdacorporation.com/docs/default-source/product-spec-sheets/geospatial-services/dg_worldview2_ds_prod.pdf?sfvrsn=4. Accessed 15 May 2018

  24. Belfiore, O.R., Parente, C.: Comparison of different algorithms to orthorectify WorldView-2 satellite imagery. Algorithms 9(4), 67 (2016). https://doi.org/10.3390/a9040067

    Article  MATH  Google Scholar 

  25. Zhang, Y.: System and method for image fusion. U.S. Patent No. 7, 340, 099, 4 March 2008 (2008)

    Google Scholar 

  26. Pouliot, D.A., King, D.J., Pitt, D.G.: Development and evaluation of an automated tree detection delineation algorithm for monitoring regenerating coniferous forests. Can. J. For. Res. 35(10), 2332–2345 (2005). https://doi.org/10.1139/x05-145

    Article  Google Scholar 

  27. Li, Z., Hayward, R., Zhang, J., Liu, Y.: Individual tree crown delineation techniques for vegetation management in power line corridor. In: Computing: Techniques and Applications, 1–3 December 2008, DICTA 2008. Digital Image, Canberra, Australia. IEEE (2008). https://doi.org/10.1109/DICTA.2008.21

  28. Rouse Jr., J.W., Haas, R.H., Schell, J.A., Deering, D.W.: Monitoring vegetation systems in the great plains with ERTS. In: Freden, S.C., Mercanti, E.P., Becker, M.A. (eds.) Third Earth Resources Technology Satellite-1 Symposium - Volume I: Technical Presentations. NASA SP-351, pp. 309–317. NASA, Washington, D.C. (1974)

    Google Scholar 

  29. Datt, B.: Remote sensing of water content in Eucalyptus leaves. Aust. J. Bot. 47(6), 909–923 (1999)

    Article  Google Scholar 

  30. El-Shikha, D.M., et al.: Remote sensing of cotton nitrogen status using the canopy chlorophyll content index (CCCI). Trans. ASAE (Am. Soc. Agric. Eng.) 51(1), 73–82 (2008). https://doi.org/10.13031/2013.24228

  31. Maccioni, A., Agati, G., Mazzinghi, P.: New vegetation indices for remote measurement of chlorophylls based on leaf directional reflectance spectra. J. Photochem. Photobiol. B 61(1), 52–61 (2001)

    Article  Google Scholar 

  32. Lillesand, T., Kiefer, R.W., Chipman, J.W.: Remote Sensing and Image Interpretation, 7th edn. Wiley, New York (2004)

    Google Scholar 

  33. Campbell, J.B., Wynne, R.H.: Introduction to Remote Sensing, 5th edn. Guilford Press, New York (2011)

    Google Scholar 

  34. Pitkänen, J.: Individual tree detection in digital aerial images by combining locally adaptive binarization and local maxima methods. Can. J. For. Res. 31(5), 832–844 (2001). https://doi.org/10.1139/x01-013

    Article  Google Scholar 

  35. Gebreslasie, M.T., Ahmed, F.B., Van Aardt, J.A., Blakeway, F.: Individual tree detection based on variable and fixed window size local maxima filtering applied to IKONOS imagery for even-aged Eucalyptus plantation forests. Int. J. Remote Sens. 32(15), 4141–4154 (2011). https://doi.org/10.1080/01431161003777205

    Article  Google Scholar 

  36. Novotný, J., Hanuš, J., Lukeš, P., Kaplan, V.: Individual tree crowns delineation using local maxima approach and seeded region growing technique. In: Proceedings of Symposium GIS Ostrava, pp. 27–39. Ostrava, Czech Republic, 23–26 January 2011

    Google Scholar 

  37. Pouliot, D., King, D.: Approaches for optimal automated individual tree crown detection in regenerating coniferous forests. Can. J. Remote Sens. 31(3), 255–267 (2005). https://doi.org/10.5589/m05-011

    Article  Google Scholar 

  38. Lamar, W.R., McGraw, J.B., Warner, T.A.: Multitemporal censusing of a population of eastern hemlock (Tsuga canadensis L.) from remotely sensed imagery using an automated segmentation and reconciliation procedure. Remote Sens. Environ. 94(1), 133–143 (2005). https://doi.org/10.1016/j.rse.2004.09.003

  39. Wulder, M., Niemann, K.O., Goodenough, D.G.: Local maximum filtering for the extraction of tree locations and basal area from high spatial resolution imagery. Remote Sens. Environ. 73(1), 103–114 (2000). https://doi.org/10.1016/S0034-4257(00)00101-2

    Article  Google Scholar 

  40. Wulder, M.A., White, J.C., Niemann, K.O., Nelson, T.: Comparison of airborne and satellite high spatial resolution data for the identification of individual trees with local maxima filtering. Int. J. Remote Sens. 25(11), 2225–2232 (2004). https://doi.org/10.1080/01431160310001659252

    Article  Google Scholar 

  41. Congalton, R.G., Green, K.: Assessing the Accuracy of Remotely Sensed Data: Principles and Practices, 2nd edn. CRC Press, Boca Raton (2008)

    Book  Google Scholar 

  42. Khalid, N., Hamid, J.A., Latif, Z.A.: Accuracy assessment of tree crown detection using local maxima and multi-resolution segmentation. In: IOP Conference Series: Earth and Environmental Science, IOP Publishing 2014, 8th International Symposium of the Digital Earth (ISDE8), 26–29 August 2013, Kuching, Sarawak, Malaysia (2014). https://doi.org/10.1088/1755-1315/18/1/012023

  43. Daley, N.M., Burnett, C.N., Wulder, C.N., Niemann, K.O., Goodenough, D.G.: Comparison of fixed-size and variable-sized windows for the estimation of tree crown position. In: Geoscience and Remote Sensing Symposium Proceedings, 6–10 July 1998, pp. 1323–1326, IGARSS 1998. IEEE International, Seattle, Washington, USA (1998)

    Google Scholar 

  44. Ke, Y., Quackenbush, L. J.: Individual tree crown detection and delineation from high spatial resolution imagery using active contour and hill-climbing methods. In: Proceedings of 2009 ASPRS Annual Conference, American Society of Photogrammetry and Remote Sensing, 9–13 March 2009, Baltimore, Maryland, USA, pp. 9–13 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oscar Rosario Belfiore .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Belfiore, O.R., Aguilar, M.A., Parente, C. (2020). Processing Very High-Resolution Satellite Images for Individual Tree Identification with Local Maxima Method. In: Parente, C., Troisi, S., Vettore, A. (eds) R3 in Geomatics: Research, Results and Review. R3GEO 2019. Communications in Computer and Information Science, vol 1246. Springer, Cham. https://doi.org/10.1007/978-3-030-62800-0_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-62800-0_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-62799-7

  • Online ISBN: 978-3-030-62800-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics