Skip to main content

Coastline Extraction from Optical Satellite Imagery and Accuracy Evaluation

  • Conference paper
  • First Online:
R3 in Geomatics: Research, Results and Review (R3GEO 2019)

Abstract

Different techniques can be applied for shoreline acquisition. Direct survey, based on GNSS (Global Navigation Satellite System) or total station, permits to obtain 3D information that is useful for the correct definition of the coastline also in consideration of the tidal effects. However, the acquisition of long stretches of coast using in-situ survey may be too expensive and time consuming. Additionally, many studies require to reconstruct temporal shoreline dynamics, and, in absence of survey carried out in the past, remotely sensed data may be a valuable source of information. For those reasons, there is a widespread usage of aerial and satellite imagery in many studies needing coastline detection.

This research aims to analyze methodological aspects of coastline extraction from optical satellite imagery at medium and high resolution: the evaluation of the results accuracy permits to compare two different approaches based on the multispectral band use. The attention is focused on Normalized Difference Vegetation Index (NDVI) and Normalized Difference Water Index (NDWI), both applied to medium resolution imagery (Landsat 8 OLI) and to high resolution imagery (GeoEye-1). Maximum Likelihood Classification (MLC), one of the most common classification methods in remote sensing based on Bayes’ Theorem, is applied to determine a threshold to separate seawater from land. An index based on the direct comparison between the automatic extracted coastline and the manually delineation of it, is used to evaluate the accuracy of the results. Both indices permit to obtain acceptable results reporting accuracy values less than the pixel dimension. However, the accuracy level of NDWI is slightly higher than NDVI.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Toure, S., Diop, O., Kpalma, K., Maiga, A.S.: Shoreline detection using optical remote sensing: a review. ISPRS Int. J. Geo-Inf. 8, 75 (2019)

    Article  Google Scholar 

  2. Delgado, I., Lloyd, G.: A simple low cost method for one person beach profiling. J Coast. Res. 20(4), 1246–1254 (2004). https://doi.org/10.2112/03-0067R.1

    Article  Google Scholar 

  3. Gens, R.: Remote sensing of coastlines: detection, extraction and monitoring. Int. J. Remote Sens. 31(7), 1819–1836 (2010). https://doi.org/10.1080/01431160902926673

    Article  Google Scholar 

  4. Gonçalves, R., Awange, J., Krueger, C.: GNSS-based monitoring and mapping of shoreline position in support of planning and management of Matinhos/PR (Brazil). J. Glob. Position. Syst. 11, 156–168 (2013). https://doi.org/10.5081/jgps.11.2.156

  5. Pardo-Pascual, J., et al.: Assessing the accuracy of automatically extracted shorelines on microtidal beaches from Landsat 7, Landsat 8 and Sentinel-2 Imagery. Remote Sens. 10(2), 326 (2018)

    Article  Google Scholar 

  6. Nugraha, W., Parapat, A.D., Arum, D.S., Istighfarini, F.: GNSS RTK application to determine coastline case study at Northern area of Sulawesi and Gorontalo. In: E3S Web of Conferences, vol. 94, p. 1016 (2019). https://doi.org/10.1051/e3sconf/20199401016

  7. Stockdonf, H.F., Sallenger Jr., A.H., List, J.H., Holman, R.A.: Estimation of shoreline position and change using airborne topographic Lidar data. J. Coast. Res. 18, 502–513 (2002)

    Google Scholar 

  8. Shaw, L., Helmholz, P., Belton, D., Addy, N.: Comparison of UAV Lidar and imagery for beach monitoring. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 589–596 (2019). https://doi.org/10.5194/isprs-archives-xlii-2-w13-589-2019

  9. Dellepiane, S., De Laurentiis, R., Giordano, F.: Coastline extraction from SAR images and a method for the evaluation of the coastline precision. Pattern Recogn. Lett. 25(13), 1461–1470 (2004). https://doi.org/10.1016/j.patrec.2004.05.022

    Article  Google Scholar 

  10. Nunziata, F., Migliaccio, M., Li, X., Ding, X.: Coastline extraction using dual polarimetric COSMO - SkyMed PingPong mode SAR data. IEEE Geosci. Remote Sens. Lett. 11(1), 104–108 (2013). https://doi.org/10.1109/lgrs.2013.2247561

  11. Bruno, M.F., Molfetta, M.G., Mossa, M., Nutricato, R., Morea, A., Chiaradia, M.T.: Coastal observation through Cosmo SkyMed high resolution SAR images. J. Coast. Res. 75, 795–800 (2016). https://doi.org/10.2112/SI75-160.1

    Article  Google Scholar 

  12. Maglione, P., Parente, C., Vallario, A.: Coastline extraction using high resolution WorldView-2 satellite imagery. Eur. J. Remote Sens. 47(1), 685–699 (2014). https://doi.org/10.5721/EuJRS20144739

    Article  Google Scholar 

  13. Bagli, S., Soille, P.: Morphological automatic extraction of pan - European coastline from Landsat ETM + images. In: International Symposium on GIS and Computer Cartography for Coastal Zone Management, pp. 256–269, October 2003

    Google Scholar 

  14. Sharma, R.C., Tateishi, R., Hara, K., Nguyen, L.V.: Developing superfine water index (SWI) for global water cover mapping using MODIS data. Remote Sens. 7(10), 13807–13841 (2015). https://doi.org/10.3390/rs71013807

    Article  Google Scholar 

  15. Boak, E.H., Turner, I.L.: Shoreline definition and detection: a review. J. Coast. Res. 21(4), 688–703 (2005). https://doi.org/10.2112/03-0071.1

    Article  Google Scholar 

  16. McGranahan, G., Balk, D., Anderson, B.: The rising tide: assessing the risks of climate change and human settlements in low elevation coastal zones. Environ. Urban. 19(1), 17–37 (2007)

    Article  Google Scholar 

  17. Palazzo, F., Latini, D., Baiocchi, V., Del Frate, F., Giannone, F., Dominici, D., Remondiere, S.: An application of COSMO-Sky Med to coastal erosion studies. Eur. J. Remote Sens. 45(1), 361–370 (2012). https://doi.org/10.5721/EuJRS20124531

    Article  Google Scholar 

  18. Aguilar, F.J., et al.: Preliminary results on high accuracy estimation of shoreline change rate based on coastal elevation models. Int. Archiv. Photogram. Remote Sens. Spatial Inf. Sci. 33(8), 986–991 (2010)

    Google Scholar 

  19. Liu, H., Jezek, K.C.: Automated extraction of coastline from satellite imagery by integrating Canny edge detection and locally adaptive thresholding methods. Int. J. Remote Sens. 25(5), 937–958 (2004)

    Article  Google Scholar 

  20. Dai, C., Howat, I.M., Larour, E., Husby, E.: Coastline extraction from repeat high resolution satellite imagery. Remote Sens. Environ. 229, 260–270 (2019). https://doi.org/10.1016/j.rse.2019.04.010

    Article  Google Scholar 

  21. Dominici, D., Zollini, S., Alicandro, M., Della Torre, F., Buscema, P.M., Baiocchi, V.: High resolution satellite images for instantaneous shoreline extraction using new enhancement algorithms. Geosciences 9(3), 123 (2019). https://doi.org/10.3390/geosciences9030123

    Article  Google Scholar 

  22. Braga, F., Tosi, L., Prati, C., Alberotanza, L.: Shoreline detection: capability of COSMO - SkyMed and high resolution multispectral images. Eur. J. Remote Sens. 46(1), 837–853 (2013). https://doi.org/10.5721/EuJRS20134650

    Article  Google Scholar 

  23. McFeeters, S.K.: The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. Int. J. Remote Sens. 17(7), 1425–1432 (1996)

    Article  Google Scholar 

  24. Liu, Y., Wang, X., Ling, F., Xu, S., Wang, C.: Analysis of coastline extraction from Landsat-8 OLI imagery. Water 9(11), 816 (2017). https://doi.org/10.3390/w9110816

    Article  Google Scholar 

  25. Wolf, A.F.: Using WorldView-2 Vis - NIR multispectral imagery to support land mapping and feature extraction using normalized difference index ratios. In: Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XVIII, vol. 8390, p. 83900. International Society for Optics and Photonics (2012). https://doi.org/10.1117/12.917717

  26. Baiocchi, V., Brigante, R., Dominici, D., Radicioni, F.: Coastline detection using high resolution multispectral satellite images. In: Proceedings of FIG Working Week, May 2012

    Google Scholar 

  27. Saeed, A.M., Fatima, A.M.: Coastline extraction using satellite imagery and image processing techniques. Red 600, 720 nm (2016)

    Google Scholar 

  28. Maglione, P., Parente, C., Vallario, A.: High resolution satellite images to reconstruct recent evolution of Domitian coastline. Am. J. Appl. Sci. 12(7), 506 (2015). https://doi.org/10.5721/EuJRS20144739

    Article  Google Scholar 

  29. Viaña-Borja, S.P., Ortega-Sánchez, M.: Automatic methodology to detect the coastline from landsat images with a new water index assessed on three different Spanish Mediterranean Deltas. Remote Sens. 11(18), 2186 (2019)

    Article  Google Scholar 

  30. Hong, Z., et al.: Automatic sub-pixel coastline extraction based on spectral mixture analysis using EO-1 Hyperion data. Front. Earth Sci. 13(3), 478–494 (2018). https://doi.org/10.1007/s11707-018-0702-5

    Article  Google Scholar 

  31. Wicaksono, A., Wicaksono, P., Khakhim, N., Farda, N.M., Marfai, M.A.: Semi-automatic shoreline extraction using water index transformation on Landsat 8 OLI imagery in Jepara Regency. In: Sixth International Symposium on LAPAN-IPB Satellite, vol. 11372, p. 113721 I. International Society for Optics and Photonics, December 2019

    Google Scholar 

  32. QGIS 3.8.3. https://qgis.org/downloads/QGIS-OSGeo4W-3.8.3-1-Setup-x86.exe

  33. Ritter, N., et al.: GeoTIFF format specification GeoTIFF revision 1.0. SPOT Image Corp, 1 (2000)

    Google Scholar 

  34. Du, Z., et al.: Analysis of Landsat-8 OLI imagery for land surface water mapping. Remote Sens. Lett. 5(7), 672–681 (2014). https://doi.org/10.1109/IGARSS.2014.6946983

    Article  Google Scholar 

  35. Giannini, M.B., Parente, C.: An object based approach for coastline extraction from Quickbird multispectral images. Int. J. Eng. Technol. 6(6), 2698–2704 (2015)

    Google Scholar 

  36. Srivastava, P.K., Han, D., Rico-Ramirez, M.A., Bray, M., Islam, T.: Selection of classification techniques for land use/land cover change investigation. Adv. Space Res. 50(9), 1250–1265 (2012). https://doi.org/10.1016/j.asr.2012.06.032

    Article  Google Scholar 

  37. Settle, J.J., Briggs, S.A.: Fast maximum likelihood classification of remotely sensed imagery. Int. J. Remote Sens. 8(5), 723–734 (1987)

    Article  Google Scholar 

  38. Foody, G.M., Campbell, N.A., Trodd, N.M., Wood, T.F.: Derivation and applications of probabilistic measures of class membership from the maximum-likelihood classification. Photogram. Eng. Remote Sens. 58(9), 1335–1341 (1992)

    Google Scholar 

  39. Xu, H.: Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. Int. J. Remote Sens. 27(14), 3025–3033 (2006). https://doi.org/10.1080/01431160600589179

    Article  Google Scholar 

  40. eoPortalDirectory, GeoEye-1 - GeoEye-1 (OrbView-5). https://earth.esa.int/web/eoportal/satellite-missions/g/geoeye-1. Access 02 Jan 2020

  41. https://docs.qgis.org/2.8/en/docs/user_manual/processing_algs/gdalogr/gdal_conversion/polygonize.html

Download references

Acknowledgements

This work synthesizes results of experiments performed within research activities supported by University of Naples “Parthenope”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emanuele Alcaras .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Alcaras, E., Errico, A., Falchi, U., Parente, C., Vallario, A. (2020). Coastline Extraction from Optical Satellite Imagery and Accuracy Evaluation. In: Parente, C., Troisi, S., Vettore, A. (eds) R3 in Geomatics: Research, Results and Review. R3GEO 2019. Communications in Computer and Information Science, vol 1246. Springer, Cham. https://doi.org/10.1007/978-3-030-62800-0_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-62800-0_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-62799-7

  • Online ISBN: 978-3-030-62800-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics