Abstract
Different techniques can be applied for shoreline acquisition. Direct survey, based on GNSS (Global Navigation Satellite System) or total station, permits to obtain 3D information that is useful for the correct definition of the coastline also in consideration of the tidal effects. However, the acquisition of long stretches of coast using in-situ survey may be too expensive and time consuming. Additionally, many studies require to reconstruct temporal shoreline dynamics, and, in absence of survey carried out in the past, remotely sensed data may be a valuable source of information. For those reasons, there is a widespread usage of aerial and satellite imagery in many studies needing coastline detection.
This research aims to analyze methodological aspects of coastline extraction from optical satellite imagery at medium and high resolution: the evaluation of the results accuracy permits to compare two different approaches based on the multispectral band use. The attention is focused on Normalized Difference Vegetation Index (NDVI) and Normalized Difference Water Index (NDWI), both applied to medium resolution imagery (Landsat 8 OLI) and to high resolution imagery (GeoEye-1). Maximum Likelihood Classification (MLC), one of the most common classification methods in remote sensing based on Bayes’ Theorem, is applied to determine a threshold to separate seawater from land. An index based on the direct comparison between the automatic extracted coastline and the manually delineation of it, is used to evaluate the accuracy of the results. Both indices permit to obtain acceptable results reporting accuracy values less than the pixel dimension. However, the accuracy level of NDWI is slightly higher than NDVI.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Toure, S., Diop, O., Kpalma, K., Maiga, A.S.: Shoreline detection using optical remote sensing: a review. ISPRS Int. J. Geo-Inf. 8, 75 (2019)
Delgado, I., Lloyd, G.: A simple low cost method for one person beach profiling. J Coast. Res. 20(4), 1246–1254 (2004). https://doi.org/10.2112/03-0067R.1
Gens, R.: Remote sensing of coastlines: detection, extraction and monitoring. Int. J. Remote Sens. 31(7), 1819–1836 (2010). https://doi.org/10.1080/01431160902926673
Gonçalves, R., Awange, J., Krueger, C.: GNSS-based monitoring and mapping of shoreline position in support of planning and management of Matinhos/PR (Brazil). J. Glob. Position. Syst. 11, 156–168 (2013). https://doi.org/10.5081/jgps.11.2.156
Pardo-Pascual, J., et al.: Assessing the accuracy of automatically extracted shorelines on microtidal beaches from Landsat 7, Landsat 8 and Sentinel-2 Imagery. Remote Sens. 10(2), 326 (2018)
Nugraha, W., Parapat, A.D., Arum, D.S., Istighfarini, F.: GNSS RTK application to determine coastline case study at Northern area of Sulawesi and Gorontalo. In: E3S Web of Conferences, vol. 94, p. 1016 (2019). https://doi.org/10.1051/e3sconf/20199401016
Stockdonf, H.F., Sallenger Jr., A.H., List, J.H., Holman, R.A.: Estimation of shoreline position and change using airborne topographic Lidar data. J. Coast. Res. 18, 502–513 (2002)
Shaw, L., Helmholz, P., Belton, D., Addy, N.: Comparison of UAV Lidar and imagery for beach monitoring. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 589–596 (2019). https://doi.org/10.5194/isprs-archives-xlii-2-w13-589-2019
Dellepiane, S., De Laurentiis, R., Giordano, F.: Coastline extraction from SAR images and a method for the evaluation of the coastline precision. Pattern Recogn. Lett. 25(13), 1461–1470 (2004). https://doi.org/10.1016/j.patrec.2004.05.022
Nunziata, F., Migliaccio, M., Li, X., Ding, X.: Coastline extraction using dual polarimetric COSMO - SkyMed PingPong mode SAR data. IEEE Geosci. Remote Sens. Lett. 11(1), 104–108 (2013). https://doi.org/10.1109/lgrs.2013.2247561
Bruno, M.F., Molfetta, M.G., Mossa, M., Nutricato, R., Morea, A., Chiaradia, M.T.: Coastal observation through Cosmo SkyMed high resolution SAR images. J. Coast. Res. 75, 795–800 (2016). https://doi.org/10.2112/SI75-160.1
Maglione, P., Parente, C., Vallario, A.: Coastline extraction using high resolution WorldView-2 satellite imagery. Eur. J. Remote Sens. 47(1), 685–699 (2014). https://doi.org/10.5721/EuJRS20144739
Bagli, S., Soille, P.: Morphological automatic extraction of pan - European coastline from Landsat ETM + images. In: International Symposium on GIS and Computer Cartography for Coastal Zone Management, pp. 256–269, October 2003
Sharma, R.C., Tateishi, R., Hara, K., Nguyen, L.V.: Developing superfine water index (SWI) for global water cover mapping using MODIS data. Remote Sens. 7(10), 13807–13841 (2015). https://doi.org/10.3390/rs71013807
Boak, E.H., Turner, I.L.: Shoreline definition and detection: a review. J. Coast. Res. 21(4), 688–703 (2005). https://doi.org/10.2112/03-0071.1
McGranahan, G., Balk, D., Anderson, B.: The rising tide: assessing the risks of climate change and human settlements in low elevation coastal zones. Environ. Urban. 19(1), 17–37 (2007)
Palazzo, F., Latini, D., Baiocchi, V., Del Frate, F., Giannone, F., Dominici, D., Remondiere, S.: An application of COSMO-Sky Med to coastal erosion studies. Eur. J. Remote Sens. 45(1), 361–370 (2012). https://doi.org/10.5721/EuJRS20124531
Aguilar, F.J., et al.: Preliminary results on high accuracy estimation of shoreline change rate based on coastal elevation models. Int. Archiv. Photogram. Remote Sens. Spatial Inf. Sci. 33(8), 986–991 (2010)
Liu, H., Jezek, K.C.: Automated extraction of coastline from satellite imagery by integrating Canny edge detection and locally adaptive thresholding methods. Int. J. Remote Sens. 25(5), 937–958 (2004)
Dai, C., Howat, I.M., Larour, E., Husby, E.: Coastline extraction from repeat high resolution satellite imagery. Remote Sens. Environ. 229, 260–270 (2019). https://doi.org/10.1016/j.rse.2019.04.010
Dominici, D., Zollini, S., Alicandro, M., Della Torre, F., Buscema, P.M., Baiocchi, V.: High resolution satellite images for instantaneous shoreline extraction using new enhancement algorithms. Geosciences 9(3), 123 (2019). https://doi.org/10.3390/geosciences9030123
Braga, F., Tosi, L., Prati, C., Alberotanza, L.: Shoreline detection: capability of COSMO - SkyMed and high resolution multispectral images. Eur. J. Remote Sens. 46(1), 837–853 (2013). https://doi.org/10.5721/EuJRS20134650
McFeeters, S.K.: The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. Int. J. Remote Sens. 17(7), 1425–1432 (1996)
Liu, Y., Wang, X., Ling, F., Xu, S., Wang, C.: Analysis of coastline extraction from Landsat-8 OLI imagery. Water 9(11), 816 (2017). https://doi.org/10.3390/w9110816
Wolf, A.F.: Using WorldView-2 Vis - NIR multispectral imagery to support land mapping and feature extraction using normalized difference index ratios. In: Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XVIII, vol. 8390, p. 83900. International Society for Optics and Photonics (2012). https://doi.org/10.1117/12.917717
Baiocchi, V., Brigante, R., Dominici, D., Radicioni, F.: Coastline detection using high resolution multispectral satellite images. In: Proceedings of FIG Working Week, May 2012
Saeed, A.M., Fatima, A.M.: Coastline extraction using satellite imagery and image processing techniques. Red 600, 720 nm (2016)
Maglione, P., Parente, C., Vallario, A.: High resolution satellite images to reconstruct recent evolution of Domitian coastline. Am. J. Appl. Sci. 12(7), 506 (2015). https://doi.org/10.5721/EuJRS20144739
Viaña-Borja, S.P., Ortega-Sánchez, M.: Automatic methodology to detect the coastline from landsat images with a new water index assessed on three different Spanish Mediterranean Deltas. Remote Sens. 11(18), 2186 (2019)
Hong, Z., et al.: Automatic sub-pixel coastline extraction based on spectral mixture analysis using EO-1 Hyperion data. Front. Earth Sci. 13(3), 478–494 (2018). https://doi.org/10.1007/s11707-018-0702-5
Wicaksono, A., Wicaksono, P., Khakhim, N., Farda, N.M., Marfai, M.A.: Semi-automatic shoreline extraction using water index transformation on Landsat 8 OLI imagery in Jepara Regency. In: Sixth International Symposium on LAPAN-IPB Satellite, vol. 11372, p. 113721 I. International Society for Optics and Photonics, December 2019
QGIS 3.8.3. https://qgis.org/downloads/QGIS-OSGeo4W-3.8.3-1-Setup-x86.exe
Ritter, N., et al.: GeoTIFF format specification GeoTIFF revision 1.0. SPOT Image Corp, 1 (2000)
Du, Z., et al.: Analysis of Landsat-8 OLI imagery for land surface water mapping. Remote Sens. Lett. 5(7), 672–681 (2014). https://doi.org/10.1109/IGARSS.2014.6946983
Giannini, M.B., Parente, C.: An object based approach for coastline extraction from Quickbird multispectral images. Int. J. Eng. Technol. 6(6), 2698–2704 (2015)
Srivastava, P.K., Han, D., Rico-Ramirez, M.A., Bray, M., Islam, T.: Selection of classification techniques for land use/land cover change investigation. Adv. Space Res. 50(9), 1250–1265 (2012). https://doi.org/10.1016/j.asr.2012.06.032
Settle, J.J., Briggs, S.A.: Fast maximum likelihood classification of remotely sensed imagery. Int. J. Remote Sens. 8(5), 723–734 (1987)
Foody, G.M., Campbell, N.A., Trodd, N.M., Wood, T.F.: Derivation and applications of probabilistic measures of class membership from the maximum-likelihood classification. Photogram. Eng. Remote Sens. 58(9), 1335–1341 (1992)
Xu, H.: Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. Int. J. Remote Sens. 27(14), 3025–3033 (2006). https://doi.org/10.1080/01431160600589179
eoPortalDirectory, GeoEye-1 - GeoEye-1 (OrbView-5). https://earth.esa.int/web/eoportal/satellite-missions/g/geoeye-1. Access 02 Jan 2020
Acknowledgements
This work synthesizes results of experiments performed within research activities supported by University of Naples “Parthenope”.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Alcaras, E., Errico, A., Falchi, U., Parente, C., Vallario, A. (2020). Coastline Extraction from Optical Satellite Imagery and Accuracy Evaluation. In: Parente, C., Troisi, S., Vettore, A. (eds) R3 in Geomatics: Research, Results and Review. R3GEO 2019. Communications in Computer and Information Science, vol 1246. Springer, Cham. https://doi.org/10.1007/978-3-030-62800-0_26
Download citation
DOI: https://doi.org/10.1007/978-3-030-62800-0_26
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-62799-7
Online ISBN: 978-3-030-62800-0
eBook Packages: Computer ScienceComputer Science (R0)