Abstract
Among the applications of Remote Sensing for urban environments, Thermal Mapping is currently one of the most interesting, although still quite limited in usage. Airborne, drone and satellite thermal imagery can in fact provide effective data for different purposes and at different scales. The peculiar characteristics of thermal images, on the other hand, make their use not really straightforward or immediate, and its insertion in an urban GIS must be carefully managed. The paper presents some approaches and solutions adopted for both the mapping of urban heat island at the scale of a whole city and a more detailed study of energy losses from building blocks. These includes geometric and radiometric calibration aspects and the integration of different sources of geomatic and remote sensing data.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Arnfield, A.J.: Two decades of urban climate research: a review of turbulence, exchanges of energy and water, and the urban heat island. Int. J. Climatol. 23(1), 1–26 (2003). https://doi.org/10.1002/joc.859
Baiocchi, V., Zottele, F., Dominici, D.: Remote sensing of urban microclimate change in L’Aquila city (Italy) after post-earthquake depopulation in an open source GIS environment. Sensors 17(2) (2017). https://doi.org/10.3390/s17020404
Bitelli, G., Blanos, R., Conte, P., Mandanici, E., Paganini, P., Pietrapertosa, C.: Hyperspectral data classification to support the radiometric correction of thermal imagery. In: Gervasi, O., et al. (eds.) ICCSA 2017. LNCS, vol. 10407, pp. 81–92. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-62401-3_7
Bitelli, G., Conte, P., Csoknyai, T., Franci, F., Girelli, V.A., Mandanici, E.: Aerial thermography for energetic modelling of cities. Remote Sens. 7(2), 2152–2170 (2015). https://doi.org/10.3390/rs70202152
Bitelli, G., Conte, P., Csoknyai, T., Mandanici, E.: Urban energetics applications and geomatic technologies in a smart city perspective. Int. Rev. Appl. Sci. Eng. 6(1), 19–29 (2015). https://doi.org/10.1556/1848.2015.6.1.3
Conte, P., Girelli, V.A., Mandanici, E.: Structure from motion for aerial thermal imagery at city scale: pre-processing, camera calibration, accuracy assessment. ISPRS J. Photogramm. Remote Sens. 146, 320–333 (2018). https://doi.org/10.1016/j.isprsjprs.2018.10.002
Focaccia, S., Barbaresi, A., Tinti, F.: Simulation of observed temperature field below a building. Environ. Geotech., 1–39 (2018). https://doi.org/10.1680/jenge.17.00105
Gallo, K., Tarpley, J., McNab, A., Karl, T.: Assessment of urban heat islands: a satellite perspective. Atmos. Res. 37(1), 37–43 (1995). https://doi.org/10.1016/0169-8095(94)00066-M
Gartland, L.M.: Heat Islands: Understanding and Mitigating Heat in Urban Areas. Routledge (2012). https://doi.org/10.4324/9781849771559
Gillespie, A., Rokugawa, S., Matsunaga, T., Cothern, J.S., Hook, S., Kahle, A.B.: A temperature and emissivity separation algorithm for advanced spaceborne thermal emission and reflection radiometer (ASTER) images. IEEE Trans. Geosci. Remote Sens. 36(4), 1113–1126 (1998). https://doi.org/10.1109/36.700995
Hemachandran, B., Hay, G.J., Kyle, G.D., Chen, G., Powers, R.P.: HEAT – home energy assessment technologies: a web based system for residential waste heat analysis using airborne thermal imagery. In: Proceedings of the 2010 Canadian Geomatics Conference and Symposium of Commission I. ISPRS (2010)
Kasmaee, S., Tinti, F.: A method to evaluate the impact of urbanization on ground temperature evolution at a regional scale. Rudarsko-geološko-naftni zbornik 33, 1–12 (2018). https://doi.org/10.17794/rgn.2018.5.1
Khodaei, B., Samadzadegan, F., Javan, F.D., Hasani, H.: 3D surface generation from aerial thermal imagery. ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. XL-1-W5, 401–405 (2015). https://doi.org/10.5194/isprsarchives-xl-1-w5-401-2015
Li, Z.L., et al.: Satellite-derived land surface temperature: current status and perspectives. Remote Sens. Environ. 131, 14–37 (2013). https://doi.org/10.1016/j.rse.2012.12.008
Maes, W., Huete, A., Steppe, K.: Optimizing the processing of UAV-based thermal imagery. Remote Sens. 9(5), 476 (2017). https://doi.org/10.3390/rs9050476
Mandanici, E., Conte, P.: Aerial thermography for energy efficiency of buildings: the ChoT project. In: Erbertseder, T., Esch, T., Chrysoulakis, N. (eds.) Remote Sensing Technologies and Applications in Urban Environments, Proceedings SPIE, vol. 10008, p. 1000808. SPIE (2016). https://doi.org/10.1117/12.2241256
Mandanici, E., Conte, P., Girelli, V.A.: Integration of aerial thermal imagery, LiDAR data and ground surveys for surface temperature mapping in urban environments. Remote Sens. 8(12), 880 (2016). https://doi.org/10.3390/rs8100880
Mandanici, E., Girelli, V.A., Poluzzi, L.: Metric accuracy of digital elevation models from worldview-3 stereo-pairs in urban areas. Remote Sens. 11(7) (2019). https://doi.org/10.3390/rs11070878
Oke, T.R.: City size and the urban heat island. Atmos. Environ. (1967) 7(8), 769–779 (1973). https://doi.org/10.1016/0004-6981(73)90140-6
Oke, T.R.: The energetic basis of the urban heat island. Q. J. R. Meteorol. Soc. 108(455), 1–24 (1982). https://doi.org/10.1002/qj.49710845502
Parsaee, M., Joybari, M.M., Mirzaei, P.A., Haghighat, F.: Urban heat island, urban climate maps and urban development policies and action plans. Environ. Technol. Innov. 14, 100341 (2019). https://doi.org/10.1016/j.eti.2019.100341
Roberts, S., Starling, G.: Making the most of Birmingham city council’s aerial thermographic study. Technical report, Centre for Sustainable Energy (2004)
Roth, M.: Effects of cities on local climates. In: Proceedings of the Workshop of IGES/APN Mega-City Project. Institute for Global Environmental Strategies, Kitakyushu (2002)
Sen, S., Roesler, J., Ruddell, B., Middel, A.: Cool pavement strategies for urban heat island mitigation in suburban phoenix, arizona. Sustainability 11(16) (2019). https://doi.org/10.3390/su11164452
Stewart, I.D., Oke, T.R.: Local climate zones for urban temperature studies. Bull. Am. Meteorol. Soc. 93(12), 1879–1900 (2012). https://doi.org/10.1175/BAMS-D-11-00019.1
Voogt, J.A., Oke, T.R.: Thermal remote sensing of urban climates. Remote Sens. Environ. 86(3), 370–384 (2003). https://doi.org/10.1016/s0034-4257(03)00079-8
Weng, Q.: Thermal infrared remote sensing for urban climate and environmental studies: methods, applications, and trends. ISPRS J. Photogramm. Remote Sens. 64(4), 335–344 (2009). https://doi.org/10.1016/j.isprsjprs.2009.03.007
Zakšek, K., Oštir, K., Kokalj, Ž.: Sky-view factor as a relief visualization technique. Remote Sens. 3(2), 398–415 (2011). https://doi.org/10.3390/rs3020398
Zhu, S., et al.: Influence of sky temperature distribution on sky view factor and its applications in urban heat island. Int. J. Climatol. 33(7), 1837–1843 (2013). https://doi.org/10.1002/joc.3660
Acknowledgments
Part of the work was performed in the framework of Central Europe project 2CE126P3 “EnergyCity - Reducing energy consumption and CO2 emissions in cities across Central Europe” (PI T. Csoknyai).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 Springer Nature Switzerland AG
About this paper
Cite this paper
Bitelli, G., Mandanici, E., Girelli, V.A. (2020). Multi-scale Remote Sensed Thermal Mapping of Urban Environments: Approaches and Issues. In: Parente, C., Troisi, S., Vettore, A. (eds) R3 in Geomatics: Research, Results and Review. R3GEO 2019. Communications in Computer and Information Science, vol 1246. Springer, Cham. https://doi.org/10.1007/978-3-030-62800-0_29
Download citation
DOI: https://doi.org/10.1007/978-3-030-62800-0_29
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-62799-7
Online ISBN: 978-3-030-62800-0
eBook Packages: Computer ScienceComputer Science (R0)