Skip to main content

Multi-scale Remote Sensed Thermal Mapping of Urban Environments: Approaches and Issues

  • Conference paper
  • First Online:
R3 in Geomatics: Research, Results and Review (R3GEO 2019)

Abstract

Among the applications of Remote Sensing for urban environments, Thermal Mapping is currently one of the most interesting, although still quite limited in usage. Airborne, drone and satellite thermal imagery can in fact provide effective data for different purposes and at different scales. The peculiar characteristics of thermal images, on the other hand, make their use not really straightforward or immediate, and its insertion in an urban GIS must be carefully managed. The paper presents some approaches and solutions adopted for both the mapping of urban heat island at the scale of a whole city and a more detailed study of energy losses from building blocks. These includes geometric and radiometric calibration aspects and the integration of different sources of geomatic and remote sensing data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arnfield, A.J.: Two decades of urban climate research: a review of turbulence, exchanges of energy and water, and the urban heat island. Int. J. Climatol. 23(1), 1–26 (2003). https://doi.org/10.1002/joc.859

    Article  Google Scholar 

  2. Baiocchi, V., Zottele, F., Dominici, D.: Remote sensing of urban microclimate change in L’Aquila city (Italy) after post-earthquake depopulation in an open source GIS environment. Sensors 17(2) (2017). https://doi.org/10.3390/s17020404

  3. Bitelli, G., Blanos, R., Conte, P., Mandanici, E., Paganini, P., Pietrapertosa, C.: Hyperspectral data classification to support the radiometric correction of thermal imagery. In: Gervasi, O., et al. (eds.) ICCSA 2017. LNCS, vol. 10407, pp. 81–92. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-62401-3_7

    Chapter  Google Scholar 

  4. Bitelli, G., Conte, P., Csoknyai, T., Franci, F., Girelli, V.A., Mandanici, E.: Aerial thermography for energetic modelling of cities. Remote Sens. 7(2), 2152–2170 (2015). https://doi.org/10.3390/rs70202152

    Article  Google Scholar 

  5. Bitelli, G., Conte, P., Csoknyai, T., Mandanici, E.: Urban energetics applications and geomatic technologies in a smart city perspective. Int. Rev. Appl. Sci. Eng. 6(1), 19–29 (2015). https://doi.org/10.1556/1848.2015.6.1.3

    Article  Google Scholar 

  6. Conte, P., Girelli, V.A., Mandanici, E.: Structure from motion for aerial thermal imagery at city scale: pre-processing, camera calibration, accuracy assessment. ISPRS J. Photogramm. Remote Sens. 146, 320–333 (2018). https://doi.org/10.1016/j.isprsjprs.2018.10.002

    Article  Google Scholar 

  7. Focaccia, S., Barbaresi, A., Tinti, F.: Simulation of observed temperature field below a building. Environ. Geotech., 1–39 (2018). https://doi.org/10.1680/jenge.17.00105

  8. Gallo, K., Tarpley, J., McNab, A., Karl, T.: Assessment of urban heat islands: a satellite perspective. Atmos. Res. 37(1), 37–43 (1995). https://doi.org/10.1016/0169-8095(94)00066-M

    Article  Google Scholar 

  9. Gartland, L.M.: Heat Islands: Understanding and Mitigating Heat in Urban Areas. Routledge (2012). https://doi.org/10.4324/9781849771559

    Article  Google Scholar 

  10. Gillespie, A., Rokugawa, S., Matsunaga, T., Cothern, J.S., Hook, S., Kahle, A.B.: A temperature and emissivity separation algorithm for advanced spaceborne thermal emission and reflection radiometer (ASTER) images. IEEE Trans. Geosci. Remote Sens. 36(4), 1113–1126 (1998). https://doi.org/10.1109/36.700995

    Article  Google Scholar 

  11. Hemachandran, B., Hay, G.J., Kyle, G.D., Chen, G., Powers, R.P.: HEAT – home energy assessment technologies: a web based system for residential waste heat analysis using airborne thermal imagery. In: Proceedings of the 2010 Canadian Geomatics Conference and Symposium of Commission I. ISPRS (2010)

    Google Scholar 

  12. Kasmaee, S., Tinti, F.: A method to evaluate the impact of urbanization on ground temperature evolution at a regional scale. Rudarsko-geološko-naftni zbornik 33, 1–12 (2018). https://doi.org/10.17794/rgn.2018.5.1

    Article  Google Scholar 

  13. Khodaei, B., Samadzadegan, F., Javan, F.D., Hasani, H.: 3D surface generation from aerial thermal imagery. ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. XL-1-W5, 401–405 (2015). https://doi.org/10.5194/isprsarchives-xl-1-w5-401-2015

  14. Li, Z.L., et al.: Satellite-derived land surface temperature: current status and perspectives. Remote Sens. Environ. 131, 14–37 (2013). https://doi.org/10.1016/j.rse.2012.12.008

    Article  Google Scholar 

  15. Maes, W., Huete, A., Steppe, K.: Optimizing the processing of UAV-based thermal imagery. Remote Sens. 9(5), 476 (2017). https://doi.org/10.3390/rs9050476

    Article  Google Scholar 

  16. Mandanici, E., Conte, P.: Aerial thermography for energy efficiency of buildings: the ChoT project. In: Erbertseder, T., Esch, T., Chrysoulakis, N. (eds.) Remote Sensing Technologies and Applications in Urban Environments, Proceedings SPIE, vol. 10008, p. 1000808. SPIE (2016). https://doi.org/10.1117/12.2241256

  17. Mandanici, E., Conte, P., Girelli, V.A.: Integration of aerial thermal imagery, LiDAR data and ground surveys for surface temperature mapping in urban environments. Remote Sens. 8(12), 880 (2016). https://doi.org/10.3390/rs8100880

    Article  Google Scholar 

  18. Mandanici, E., Girelli, V.A., Poluzzi, L.: Metric accuracy of digital elevation models from worldview-3 stereo-pairs in urban areas. Remote Sens. 11(7) (2019). https://doi.org/10.3390/rs11070878

  19. Oke, T.R.: City size and the urban heat island. Atmos. Environ. (1967) 7(8), 769–779 (1973). https://doi.org/10.1016/0004-6981(73)90140-6

  20. Oke, T.R.: The energetic basis of the urban heat island. Q. J. R. Meteorol. Soc. 108(455), 1–24 (1982). https://doi.org/10.1002/qj.49710845502

    Article  Google Scholar 

  21. Parsaee, M., Joybari, M.M., Mirzaei, P.A., Haghighat, F.: Urban heat island, urban climate maps and urban development policies and action plans. Environ. Technol. Innov. 14, 100341 (2019). https://doi.org/10.1016/j.eti.2019.100341

  22. Roberts, S., Starling, G.: Making the most of Birmingham city council’s aerial thermographic study. Technical report, Centre for Sustainable Energy (2004)

    Google Scholar 

  23. Roth, M.: Effects of cities on local climates. In: Proceedings of the Workshop of IGES/APN Mega-City Project. Institute for Global Environmental Strategies, Kitakyushu (2002)

    Google Scholar 

  24. Sen, S., Roesler, J., Ruddell, B., Middel, A.: Cool pavement strategies for urban heat island mitigation in suburban phoenix, arizona. Sustainability 11(16) (2019). https://doi.org/10.3390/su11164452

  25. Stewart, I.D., Oke, T.R.: Local climate zones for urban temperature studies. Bull. Am. Meteorol. Soc. 93(12), 1879–1900 (2012). https://doi.org/10.1175/BAMS-D-11-00019.1

    Article  Google Scholar 

  26. Voogt, J.A., Oke, T.R.: Thermal remote sensing of urban climates. Remote Sens. Environ. 86(3), 370–384 (2003). https://doi.org/10.1016/s0034-4257(03)00079-8

    Article  Google Scholar 

  27. Weng, Q.: Thermal infrared remote sensing for urban climate and environmental studies: methods, applications, and trends. ISPRS J. Photogramm. Remote Sens. 64(4), 335–344 (2009). https://doi.org/10.1016/j.isprsjprs.2009.03.007

    Article  Google Scholar 

  28. Zakšek, K., Oštir, K., Kokalj, Ž.: Sky-view factor as a relief visualization technique. Remote Sens. 3(2), 398–415 (2011). https://doi.org/10.3390/rs3020398

  29. Zhu, S., et al.: Influence of sky temperature distribution on sky view factor and its applications in urban heat island. Int. J. Climatol. 33(7), 1837–1843 (2013). https://doi.org/10.1002/joc.3660

    Article  Google Scholar 

Download references

Acknowledgments

Part of the work was performed in the framework of Central Europe project 2CE126P3 “EnergyCity - Reducing energy consumption and CO2 emissions in cities across Central Europe” (PI T. Csoknyai).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriele Bitelli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bitelli, G., Mandanici, E., Girelli, V.A. (2020). Multi-scale Remote Sensed Thermal Mapping of Urban Environments: Approaches and Issues. In: Parente, C., Troisi, S., Vettore, A. (eds) R3 in Geomatics: Research, Results and Review. R3GEO 2019. Communications in Computer and Information Science, vol 1246. Springer, Cham. https://doi.org/10.1007/978-3-030-62800-0_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-62800-0_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-62799-7

  • Online ISBN: 978-3-030-62800-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics