Skip to main content

Precipitable Water Vapor Content from GNSS/GPS: Validation Against Radiometric Retrievals, Atmospheric Sounding and ECMWF Model Outputs over a Test Area in Milan

  • Conference paper
  • First Online:
R3 in Geomatics: Research, Results and Review (R3GEO 2019)

Abstract

The availability of atmospheric water vapor content observations, with high temporal and spatial resolution, proved to have a high impact in the prediction of heavy rain events obtained from numerical weather prediction models. Several techniques can be applied to derive such observations. Some of them are well consolidated, some others are still under development. The focus of this work is to provide a statistical assessment of the consistency between four different techniques for water vapor monitoring, and specifically for precipitable water vapor (PWV) retrieval: radiometer-derived, European Centre for Medium-Range Weather Forecasts (ECMWF) meteorological model derived, GNSS-derived and atmospheric sounding derived PWV. An overview of the data processing needed to estimate such parameter in the four cases is given to highlight how the corresponding PWV is related to the actual atmospheric water vapor content. Time series of PWV obtained with the different methods are compared for a case study in Milan, over a period of one year (March 1st, 2018–February 11th, 2019). A four-channel Ka-band/W-band radiometer located in the main campus of Politecnico di Milano is employed in association with a GNSS dual-frequency receiver (MILA), part of a regional network and installed in the same campus, 280 m far from the radiometer. GNSS data are processed by the goGPS software, applying a precise point positioning strategy. A comparison with atmospheric sounding (Milano-Linate station, located at about 6 km from the GNSS receiver), as well as with PWV derived from the ECWMF model (operational products), is also given. Results show a good agreement between the outputs of the four different data sources confirming GNSS as a valid alternative to the well consolidated techniques and opening the way to its synergistic use with co-located radiometers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Askne, J., Nordius, H.: Estimation of tropospheric delay for microwaves from surface weather data. Radio Sci. 22(03), 379–386 (1987)

    Article  Google Scholar 

  2. Bai, Z., Feng, Y.: GPS water vapor estimation using interpolated surface meteorological data from Australian automatic weather stations. J. Glob. Positioning Syst. 2(2), 83–89 (2003)

    Article  Google Scholar 

  3. Barindelli, S., Realini, E., Venuti, G., Fermi, A., Gatti, A.: Detection of water vapor time variations associated with heavy rain in northern Italy by geodetic and low-cost GNSS receivers. Earth, Planets and Space 70(1), 1–18 (2018). https://doi.org/10.1186/s40623-018-0795-7

    Article  Google Scholar 

  4. Benevides, P., Catalao, J., Miranda, P.M.A.: On the inclusion of GPS precipitable water vapour in the nowcasting of rainfall. Nat. Hazards Earth Syst. Sci. 15, 2605–2616 (2015)

    Article  Google Scholar 

  5. Berberan-Santos, M.N., Bodunov, E.N., Pogliani, L.: On the barometric formula. Am. J. Phys. 65(5), 404–412 (1997)

    Article  Google Scholar 

  6. Bevis, M., Businger, S., Herring, T.A., Rocken, C., Anthes, R.A., Ware, R.H.: GPS meteorology: remote sensing of atmospheric water vapor using the Global Positioning System. J. Geophys. Res. Atmos. 97(D14), 15787–15801 (1992)

    Article  Google Scholar 

  7. Campanelli, M., et al.: Precipitable water vapour content from ESR/SKYNET sun–sky radiometers: validation against GNSS/GPS and AERONET over three different sites in Europe. Atmos. Meas. Tech. 11(1), 81–94 (2018)

    Article  Google Scholar 

  8. Davis, J.L., Herring, T.A., Shapiro, I.I., Rogers, A.E.E., Elgered, G.: Geodesy by radio interferometry: effects of atmospheric modeling errors on estimates of baseline length. Radio Sci. 20(6), 1593–1607 (1985)

    Article  Google Scholar 

  9. D’Adderio, L.P., Pazienza, L., Mascitelli, A., Tiberia, A., Dietrich, S.: A combined IR-GPS satellite analysis for potential applications in detecting and predicting lightning activity. Remote Sens. 12(6), 1031 (2020)

    Article  Google Scholar 

  10. Fionda, E., Cadeddu, M., Mattioli, V., Pacione, R.: Intercomparison of integrated water vapor measurements at high latitudes from co-located and near-located instruments. Remote Sens. 11(18), 2130 (2019)

    Article  Google Scholar 

  11. Herrera, A.M., Suhandri, H.F., Realini, E., Reguzzoni, M., de Lacy, M.C.: goGPS: open-source MATLAB software. GPS Solutions 20(3), 595–603 (2015). https://doi.org/10.1007/s10291-015-0469-x

    Article  Google Scholar 

  12. Liebe, H.J., Hufford, G.A., Cotton, M.G.: Propagation modelling of moist air and suspended water/ice particles at frequencies below 1000 GHz. In: AGARD 52nd Specialists’ Meeting of the EM Wave Propagation Panel, Palma De Maiorca, Spain (1993)

    Google Scholar 

  13. Lagasio, M., et al.: Effect of the ingestion in the WRF model of different Sentinel-derived and GNSS-derived products: analysis of the forecasts of a high impact weather event. Eur. J. Remote Sens. 52, 1–18 (2019)

    Article  Google Scholar 

  14. Luini, L., Riva, C., Capsoni, C., Martellucci, A.: Attenuation in non-rainy conditions at millimeter wavelengths: assessment of a procedure. IEEE Trans. Geosci. Remote Sens. 45(7), 2150–2157 (2007)

    Article  Google Scholar 

  15. Mascitelli, A.: New Applications and Opportunities of GNSS Meteorology. Sapienza Università di Roma (2020)

    Google Scholar 

  16. Mascitelli, A., et al.: Data assimilation of GPS-ZTD into the RAMS model through 3D-Var: preliminary results at the regional scale. Meas. Sci. Technol. 30(5), 055801 (2019)

    Article  Google Scholar 

  17. Niell, A.E., et al.: Comparison of measurements of atmospheric wet delay by radiosonde, water vapor radiometer, GPS, and VLBI. J. Atmos. Oceanic Technol. 18(6), 830–850 (2001)

    Article  Google Scholar 

  18. Owens, R.G., Hewson, T.D.: ECMWF Forecast User Guide. ECMWF, Reading (2018). https://doi.org/10.21957/m1cs7h

  19. Pacione, R., et al.: GPS meteorology validation and comparisons with ground-based microwave radiometer and mesoscale model for the Italian GPS permanent stations. Phys. Chem. Earth Part A. 26(3), 139–145 (2001)

    Article  Google Scholar 

  20. Realini, E., Sato, K., Tsuda, T., Manik, T.: An observation campaign of precipitable water vapor with multiple GPS receivers in western Java, Indonesia. Prog. Earth Planet. Sci. 1(1), 17 (2014)

    Article  Google Scholar 

  21. Saastamoinen, J.: Contributions to the theory of atmospheric refraction. Bull. Géodésique (1946–1975) 107(1), 13–34 (1973)

    Article  Google Scholar 

  22. Salonen, E., Uppala, W.: New prediction method of cloud attenuation. Elect. Lett. 27(12), 1106–1108 (1991)

    Article  Google Scholar 

  23. Sangiorgio, M., et al.: Improved extreme rainfall events forecasting using neural networks and water vapor measures. In: Proceedings of the 6th International Conference on Time Series and Forecasting, pp. 820–826 (2019)

    Google Scholar 

  24. Sangiorgio, M., et al.: A comparative study on machine learning techniques for intense convective rainfall events forecasting. In: Advances in Time Series and Forecasting. Springer, Cham (2020). Stage of publication (accepted)

    Google Scholar 

  25. Sapucci, L.F., Machado, L.A., de Souza, E.M., Campos, T.B.: Global positioning system precipitable water vapour (GPS-PWV) jumps before intense rain events: a potential application to nowcasting. Meteorol. Appl. 26(1), 49–63 (2019)

    Article  Google Scholar 

  26. Ssenyunzi, R.C., et al.: Variability and accuracy of zenith total delay over the east african tropical region. Adv. Space Res. 64, 900–920 (2019)

    Article  Google Scholar 

  27. Vedel, H., Mogensen, K.S., Huang, X.Y.: Calculation of zenith delays from meteorological data comparison of NWP model, radiosonde and GPS delays. Phys. Chem. Earth Part A. 26(6–8), 497–502 (2001)

    Article  Google Scholar 

  28. Westwater, E.R., Guiraud, F.O.: Ground-based microwave radiometric retrieval of precipitable water vapor in the presence of clouds with high liquid content. Radio Sci. 15, 947–957 (1980)

    Article  Google Scholar 

  29. Zhao, Q., Liu, Y., Ma, X., Yao, W., Yao, Y., Li, X.: An improved rainfall forecasting model based on GNSS observations. IEEE Trans. Geosci. Remote Sens. 58, 4891–4900 (2020)

    Article  Google Scholar 

  30. Zumberge, J.F., Heflin, M.B., Jefferson, D.C., Watkins, M.M., Webb, F.H.: Precise point positioning for the efficient and robust analysis of GPS data from large networks. J. Geophys. Res.: Solid Earth 102(B3), 5005–5017 (1997)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandra Mascitelli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mascitelli, A., Barindelli, S., Realini, E., Luini, L., Venuti, G. (2020). Precipitable Water Vapor Content from GNSS/GPS: Validation Against Radiometric Retrievals, Atmospheric Sounding and ECMWF Model Outputs over a Test Area in Milan. In: Parente, C., Troisi, S., Vettore, A. (eds) R3 in Geomatics: Research, Results and Review. R3GEO 2019. Communications in Computer and Information Science, vol 1246. Springer, Cham. https://doi.org/10.1007/978-3-030-62800-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-62800-0_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-62799-7

  • Online ISBN: 978-3-030-62800-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics