Abstract
Industrial ontologies can support the Product Development Process (PDP) and the product and industrial system lifecycle, to have a seamless collaboration between actors. In this sense, an industrial resource ontology that supports an aerospace assembly line design process is key within the conceptual phase of the PDP. Industrial resources can have a different classification to support the design goal of the assembly line, in terms of process optimization, layout and space optimization, production time, costs, or even the assembly line capabilities definition. This work describes an initial approach to an industrial resources ontology, considering the notions that will describe these resources inside an assembly line design perimeter.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Järvenpää, E., Siltala, N., Hylli, O., Lanz, M.: The development of an ontology for describing the capabilities of manufacturing resources. J. Intell. Manuf. 30(2), 959–978 (2018). https://doi.org/10.1007/s10845-018-1427-6
Whitney, D.E.: Mechanical Assemblies: Their Design, Manufacture, and Role in Product Development. Oxford University Press Inc., New York (2004). ISBN 0-19-515782-6
Su, B.Q., Smith, S.S.: An integrated framework for assembly-oriented product design and optimization, J. Ind. Technol. 19(2), 1–9 (2003)
Pardessus, T.: Concurrent engineering development and practices for aircraft design at Airbus. In: Proceedings of the 24th ICAS Meeting, Yokohama (2004)
Mas, F., Menendez, J.L., Oliva, M., Rios, J., Gomez, A., Olmo, V.: iDMU as the collaborative engineering engine: research experiences in Airbus. In: Proceedings of IEEE Engineering, Technology and Innovation International Conference (2014). https://doi.org/10.1109/ice.2014.6871594
Mas, F., RÃos, J., Gómez, A., Hernández, J.: Knowledge-based application to define aircraft final assembly lines at the industrialization conceptual design phase. Int. J. Comput. Integr. Manuf. 29(6), 677–691 (2015)
Mas, F., Oliva, M., Rios, J., Gomez, A., Olmos, V.: PLM based approach to the industrialization of aeronautical assemblies. Procedia Eng. 132, 1045–1052 (2015)
Mas, F., Racero, J., Oliva, M., Morales-Palma, D.: A preliminary methodological approach to Models for Manufacturing (MfM). In: Chiabert, P., Bouras, A., Noël, F., RÃos, J. (eds.) PLM 2018. IAICT, vol. 540, pp. 273–283. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01614-2_25
Mas, F., Racero, J., Oliva, M., Morales-Palma, D.: Preliminary ontology definition for aerospace assembly lines in Airbus using Models for Manufacturing methodology. In: Sanfilippo, E.M., Terkaj, W. (eds.). Formal Ontologies Meet Industry: Proceedings of the 9th International Workshop, within the Proceedings of the International Conference Changeable, Agile, Reconfigurable and Virtual Production (CARV) (2018)
Arista, R., Mas, F., Oliva, M., Racero, J., Morales-Palma, D.: Framework to support Models for Manufacturing (MfM) methodology. In: Proceedings of 9th IFAC Conference on Manufacturing Modelling, Management and Control, vol. 52, pp. 1584–1589 (2019). https://doi.org/10.1016/j.ifacol.2019.11.426
Arista, R., Mas, F., Oliva, M., Morales-Palma, D.: Applied ontologies for assembly system design and management within the aerospace industry. In: Proceedings of the Joint Ontology Workshops JOWO 2019, 10th International Workshop on Formal Ontologies meet Industry, vol. 2518 (2019). http://ceur-ws.org/Vol-2518/paper-FOMI1.pdf
Graves, S.C., Whitney, D.E.: A mathematical programming procedure for equipment selection and system evaluation in programmable assembly. In: Proceedings of the IEEE Decision and Control, pp. 531–536. IEEE Press (1979)
Rekiek, B., Alexandre., D., Del-Chambre, A., Bratcu, A.: State of art of optimization methods for assembly line design. Annu. Rev. Control 26(1), 45–56 (2002)
Grüninger, M., Menzel, C.: The process specification language (PSL) theory and applications. AI Mag. 24(3), 63–74 (2003)
Lemaignan, S., Siadat, A., Dantan, J.Y., Semenenko, A.: MASON: a proposal for an ontology of manufacturing domain. In: Proceedings - DIS 2006: IEEE Workshop on Distributed Intelligent Systems - Collective Intelligence and Its Applications, pp. 195–200 (2006)
Cutting-Decelle, A., Young, R., Michel, J., Grangel, R., Le Cardinal, J., Bourey, J.: ISO 15531 MANDATE: a product-process-resource based approach for managing modularity in production management. Concurr. Eng. 15(2) (2007). https://doi.org/10.1177/1063293x07079329
Mas, F., Rios, J., Menendez, J.L., Gomez, A.: A process-oriented approach to modeling the conceptual design of aircraft assembly lines. Int. J. Adv. Manuf. Technol. 67(1–4), 771–784 (2013). https://doi.org/10.1007/s00170-012-4521-5
Chengying, L., Xiankui, W., Yuchen, H.: Research on manufacturing resource modeling based on the O-O method. J. Mater. Process. Technol. 139, 40–43 (2003). https://doi.org/10.1016/S0924-0136(03)00179-1
Ameri, F., Urbanovsky, C., McArthur, C.: A systematic approach to developing ontologies for manufacturing service modeling. In: Proceedings of the Workshop on Ontology and Semantic Web for Manufacturing (2012)
Sanfilippo, E.M., et al.: Modeling manufacturing resources: an ontological approach. In: Chiabert, P., Bouras, A., Noël, F., RÃos, J. (eds.) PLM 2018. IAICT, vol. 540, pp. 304–313. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01614-2_28
Arista, R., Mas, F., Vallellano, C., Morales-Palma, D., Oliva, M.: Towards manufacturing ontologies for resources management in the aerospace industry. In: 10th International Conference on Interoperability for Enterprise Systems and Applications I-ESA 2020, Tarbes, France (2020, in press)
Tomašević, N., Batić, M., Blanes, L., Keane, M., Vraneš, S.: Ontology-based facility data model for energy management. Adv. Eng. Inform. 29(4), 971–984 (2015)
Acknowledgements
The authors wish to express their sincere gratitude to University of Sevilla colleagues in Spain, to Airbus colleagues in France and Spain for their support and contribution during the development of this work.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2020 IFIP International Federation for Information Processing
About this paper
Cite this paper
Arista, R., Mas, F., Vallellano, C. (2020). Initial Approach to an Industrial Resources Ontology in Aerospace Assembly Lines. In: Nyffenegger, F., RÃos, J., Rivest, L., Bouras, A. (eds) Product Lifecycle Management Enabling Smart X. PLM 2020. IFIP Advances in Information and Communication Technology, vol 594. Springer, Cham. https://doi.org/10.1007/978-3-030-62807-9_23
Download citation
DOI: https://doi.org/10.1007/978-3-030-62807-9_23
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-62806-2
Online ISBN: 978-3-030-62807-9
eBook Packages: Computer ScienceComputer Science (R0)