Skip to main content

Modelling and Implementation of Unmanned Aircraft Collision Avoidance

  • Conference paper
  • First Online:
Dependable Software Engineering. Theories, Tools, and Applications (SETTA 2020)

Abstract

With the increasing application of unmanned aircraft in civil airspace, collision avoidance systems for unmanned aircraft are becoming more and more important and valuable. An ideal collision avoidance system gives the aircraft an optimal strategy for choosing flight actions to avoid collision risks when it detects other aircraft nearby. Currently the general approach to generating collision avoidance logics is to model the problem as a partially observable Markov decision process (POMDP), and then synthesize an optimal policy. However, the existing systems require the precise position information of the intruder aircraft to generate the avoidance actions and ignore the effects of the flight path changes, which may result in its lower robustness or a wasting of flying resources.

In this paper, we construct a collision avoidance system based on limited information that reduces the variations from the original flight path. We use POMDPs to model the collision avoidance system with only the destination information of our own aircraft and rough information about the intruder position and generate the collision resolution logic. We implement the collision avoidance module, embed it into the real unmanned aircraft system over PX4 flight control platform and demonstrate the effectiveness of our system by flight simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://pixhawk.org/.

  2. 2.

    https://dev.px4.io/master/en/index.html, PX4 Development Guide.

References

  1. Bai, H., Hsu, D., Kochenderfer, M.J., Lee, W.S.: Unmanned aircraft collision avoidance using continuous-state POMDPs. In: Durrant-Whyte, H.F., Roy, N., Abbeel, P. (eds.) Robotics: Science and Systems VII, University of Southern California, Los Angeles, CA, USA, 27–30 June 2011 (2011). https://doi.org/10.15607/RSS.2011.VII.001. http://www.roboticsproceedings.org/rss07/p01.html

  2. Bai, H., Hsu, D., Lee, W., Vien, N.: Monte Carlo value iteration for continuous-state POMDPs. Algorithmic Found. Robot. IX 68, 175–191 (2010). https://doi.org/10.1007/978-3-642-17452-0_11

    Article  MATH  Google Scholar 

  3. Hauskrecht, M.: Value-function approximations for partially observable Markov decision processes. J. Artif. Intell. Res. 13, 33–94 (2000). https://doi.org/10.1613/jair.678

    Article  MathSciNet  MATH  Google Scholar 

  4. Hazeghi, K., Puterman, M.: Markov decision processes: discrete stochastic dynamic programming. J. Am. Stat. Assoc. 90, 392 (1995). https://doi.org/10.2307/2291177

    Article  Google Scholar 

  5. Julian, K.D., Lopez, J., Brush, J.S., Owen, M.P., Kochenderfer, M.J.: Policy compression for aircraft collision avoidance systems. In: 2016 IEEE/AIAA 35th Digital Avionics Systems Conference (DASC), pp. 1–10 (2016)

    Google Scholar 

  6. Kaelbling, L., Littman, M., Cassandra, A.: Planning and acting in partially observable stochastic domains. Artif. Intell. 101, 99–134 (1998). https://doi.org/10.1016/S0004-3702(98)00023-X

    Article  MathSciNet  MATH  Google Scholar 

  7. Kamen, E.W., Su, J.K.: Optimal estimation. In: Grimble, M.J., Johnson, M.A. (eds.) Introduction to Optimal Estimation. Advanced Textbooks in Control and Signal Processing, Springer, London (1999). https://doi.org/10.1007/978-1-4471-0417-9_3

    Chapter  MATH  Google Scholar 

  8. Kochenderfer, M., Chryssanthacopoulos, J.: Robust airborne collision avoidance through dynamic programming (2011)

    Google Scholar 

  9. Kochenderfer, M., Holland, J., Chryssanthacopoulos, J.: Next generation airborne collision avoidance system. Lincoln Lab. J. 19, 17–33 (2012)

    Google Scholar 

  10. Kuchar, J., Drumm, A.: The traffic alert and collision avoidance system. Lincoln Lab. J. 16(2), 277–296 (2007)

    Google Scholar 

  11. Kurniawati, H., Hsu, D., Lee, W.S.: SARSOP: efficient point-based POMDP planning by approximating optimally reachable belief spaces. In: Robotics: Science and Systems IV (2008)

    Google Scholar 

  12. Manfredi, G., Jestin, Y.: An introduction to ACAS Xu and the challenges ahead. In: DASC, pp. 1–9 (2016). https://doi.org/10.1109/DASC.2016.7778055

  13. Pineau, J., Gordon, G., Thrun, S.: Point-based value iteration: an anytime algorithm for POMDPs. In: IJCAI, pp. 1025–1032 (2003)

    Google Scholar 

  14. Porta, J., Vlassis, N., Spaan, M., Poupart, P.: Point-based value iteration for continuous POMDPs. J. Mach. Learn. Res. 7, 2329–2367 (2006)

    MathSciNet  MATH  Google Scholar 

  15. Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic Programming. Wiley Series in Probability and Statistics, vol. 594. Wiley, Hoboken (2005)

    MATH  Google Scholar 

  16. Shani, G., Pineau, J., Kaplow, R.: A survey of point-based POMDP solvers. Auton. Agent. Multi-Agent Syst. 27, 1–51 (2013). https://doi.org/10.1007/s10458-012-9200-2

    Article  Google Scholar 

  17. Smith, T., Simmons, R.: Point-based POMDP algorithms: improved analysis and implementation. In: UAI, pp. 542–549 (2005)

    Google Scholar 

  18. Sondik, E.J.: The optimal control of partially observable Markov processes over the infinite horizon: discounted costs. Oper. Res. 26(2), 282–304 (1978). https://doi.org/10.1287/opre.26.2.282

    Article  MathSciNet  MATH  Google Scholar 

  19. Sutton, R.S., Barto, A.G.: Reinforcement Learning - An Introduction. Adaptive Computation and Machine Learning. MIT Press, Cambridge (1998). http://www.worldcat.org/oclc/37293240

    Book  Google Scholar 

  20. Temizer, S., Kochenderfer, M., Kaelbling, L., Lozano-Perez, T., Kuchar, J.: Collision avoidance for unmanned aircraft using Markov decision processes. In: AIAA Guidance, Navigation, and Control Conference (2010). https://doi.org/10.2514/6.2010-8040

  21. Thrun, S.: Monte Carlo POMDPs. In: NIPS, pp. 1064–1070 (1999)

    Google Scholar 

Download references

Acknowledgments

The authors are very thankful to Xuechao Sun and Junwen Li for helpful discussion and the assembly of the Pixhawk drone. This work has been supported by the Guangdong Science and Technology Department (grant no. 2018B010107004), the Natural Science Foundation of Guangdong Province (grant no. 2019A1515011689), and the National Natural Science Foundation of China (grant nos. 61761136011, 61532019, 61836005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Turrini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Feng, W., Huang, CC., Turrini, A., Li, Y. (2020). Modelling and Implementation of Unmanned Aircraft Collision Avoidance. In: Pang, J., Zhang, L. (eds) Dependable Software Engineering. Theories, Tools, and Applications. SETTA 2020. Lecture Notes in Computer Science(), vol 12153. Springer, Cham. https://doi.org/10.1007/978-3-030-62822-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-62822-2_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-62821-5

  • Online ISBN: 978-3-030-62822-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics