Skip to main content

Probably Approximately Correct Interpolants Generation

  • Conference paper
  • First Online:
Dependable Software Engineering. Theories, Tools, and Applications (SETTA 2020)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 12153))

Abstract

In this paper we propose a linear programming based method to generate interpolants for two Boolean formulas in the framework of probably approximately correct (PAC) learning. The computed interpolant is termed as a PAC interpolant with respect to a violation level \(\epsilon \in (0,1)\) and confidence level \(\beta \in (0,1)\): with at least \(1-\beta \) confidence, the probability that the PAC interpolant is a true interpolant is larger than \(1-\epsilon \). Unlike classical interpolants which are used to justify that two formulas are inconsistent, the PAC interpolant is proposed for providing a formal characterization of how inconsistent two given formulas are. This characterization is very important, especially for situations that the two formulas cannot be proven to be inconsistent. The PAC interpolant is computed by solving a scenario optimization problem, which can be regarded as a statistically sound formal method in the sense that it provides formal correct guarantees expressed using violation probabilities and confidences. The scenario optimization problem is reduced to a linear program in our framework, which is constructed by a family of independent and identically distributed samples of variables in the given two Boolean formulas. In this way we can synthesize interpolants for formulas that existing methods are not capable of dealing with. Three examples demonstrate the merits of our approach.

This work has been supported through grants by NSFC under grant No. 61836005, 61625206, the CAS Pioneer Hundred Talents Program under grant No. Y8YC235015, and the MoE, Singapore, Tier-2 grant #MOE2019-T2-2-040.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Andersen, M., Dahl, J., Liu, Z., Vandenberghe, L.: Interior-point methods for large-scale cone programming. In: Optimization for Machine Learning, pp. 55–83 (2011)

    Google Scholar 

  2. Benhamou, F., Granvilliers, L.: Continuous and interval constraints. In: Handbook of Constraint Programming. Foundations of Artificial Intelligence, vol. 2, pp. 571–603 (2006)

    Google Scholar 

  3. Calafiore, G.C., Campi, M.C.: The scenario approach to robust control design. IEEE Trans. Autom. Control 51(5), 742–753 (2006)

    Article  MathSciNet  Google Scholar 

  4. Campi, M.C., Garatti, S., Prandini, M.: The scenario approach for systems and control design. Ann. Rev. Control 33(2), 149–157 (2009)

    Article  Google Scholar 

  5. Chen, M., Wang, J., An, J., Zhan, B., Kapur, D., Zhan, N.: NIL: learning nonlinear interpolants. In: Fontaine, P. (ed.) CADE 2019. LNCS (LNAI), vol. 11716, pp. 178–196. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-29436-6_11

    Chapter  Google Scholar 

  6. Cimatti, A., Griggio, A., Sebastiani, R.: Efficient interpolant generation in satisfiability modulo theories. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 397–412. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78800-3_30

    Chapter  Google Scholar 

  7. Craig, W.: Linear reasoning. A new form of the Herbrand-Gentzen theorem. J. Symb. Logic 22(3), 250–268 (1957)

    Article  MathSciNet  Google Scholar 

  8. Dai, L., Xia, B., Zhan, N.: Generating non-linear interpolants by semidefinite programming. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 364–380. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-8_25

    Chapter  Google Scholar 

  9. Fitch, J.: Solving algebraic problems with REDUCE. J. Symb. Comput. 1(2), 211–227 (1985)

    Article  MathSciNet  Google Scholar 

  10. Fränzle, M., Herde, C., Teige, T., Ratschan, S., Schubert, T.: Efficient solving of large non-linear arithmetic constraint systems with complex Boolean structure. J. Satisf. Boolean Model. Comput. 1, 209–236 (2007)

    MATH  Google Scholar 

  11. Gan, T., Dai, L., Xia, B., Zhan, N., Kapur, D., Chen, M.: Interpolation synthesis for quadratic polynomial inequalities and combination with EUF. In: IJCAR 2016, pp. 195–212 (2016)

    Google Scholar 

  12. Gan, T., Xia, B., Xue, B., Zhan, N., Dai, L.: Nonlinear Craig interpolant generation. In: Lahiri, S.K., Wang, C. (eds.) CAV 2020. LNCS, vol. 12224, pp. 415–438. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-53288-8_20

    Chapter  Google Scholar 

  13. Gao, S., Kong, S., Clarke, E.M.: Proof generation from delta-decisions. In: SYNASC 2014, pp. 156–163 (2014)

    Google Scholar 

  14. Gao, S., Zufferey, D.: Interpolants in nonlinear theories over the reals. In: Chechik, M., Raskin, J.-F. (eds.) TACAS 2016. LNCS, vol. 9636, pp. 625–641. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49674-9_41

    Chapter  MATH  Google Scholar 

  15. Gearhart, J.L., Adair, K.L., Detry, R.J., Durfee, J.D., Jones, K.A., Martin, N.: Comparison of open-source linear programming solvers. Technical report SAND2013-8847 (2013)

    Google Scholar 

  16. Graf, S., Saidi, H.: Construction of abstract state graphs with PVS. In: Grumberg, O. (ed.) CAV 1997. LNCS, vol. 1254, pp. 72–83. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-63166-6_10

    Chapter  Google Scholar 

  17. Haussler, D.: Probably approximately correct learning. University of California, Santa Cruz, Computer Research Laboratory (1990)

    Google Scholar 

  18. Henzinger, T., Jhala, R., Majumdar, R., McMillan, K.: Abstractions from proofs. In POPL 2004, 232–244 (2004)

    Google Scholar 

  19. Kapur, D., Majumdar, R., Zarba, C.: Interpolation for data structures. In: FSE 2006, pp. 105–116 (2006)

    Google Scholar 

  20. Kovács, L., Voronkov, A.: Interpolation and symbol elimination. In: Schmidt, R.A. (ed.) CADE 2009. LNCS (LNAI), vol. 5663, pp. 199–213. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02959-2_17

    Chapter  Google Scholar 

  21. Krajíček, J.: Interpolation theorems, lower bounds for proof systems, and independence results for bounded arithmetic. J. Symb. Logic 62(2), 457–486 (1997)

    Article  MathSciNet  Google Scholar 

  22. Kupferschmid, S., Becker, B.: Craig interpolation in the presence of non-linear constraints. In: Fahrenberg, U., Tripakis, S. (eds.) FORMATS 2011. LNCS, vol. 6919, pp. 240–255. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24310-3_17

    Chapter  MATH  Google Scholar 

  23. McMillan, K.L.: Interpolation and SAT-based model checking. In: Hunt, W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 1–13. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45069-6_1

    Chapter  Google Scholar 

  24. McMillan, K.: An interpolating theorem prover. Theor. Comput. Sci. 345(1), 101–121 (2005)

    Article  MathSciNet  Google Scholar 

  25. McMillan, K.L.: Quantified invariant generation using an interpolating saturation prover. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 413–427. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78800-3_31

    Chapter  Google Scholar 

  26. Pudlǎk, P.: Lower bounds for resolution and cutting plane proofs and monotone computations. J. Symb. Logic 62(3), 981–998 (1997)

    Article  MathSciNet  Google Scholar 

  27. Rybalchenko, A., Sofronie-Stokkermans, V.: Constraint solving for interpolation. J. Symb. Comput. 45(11), 1212–1233 (2010)

    Article  MathSciNet  Google Scholar 

  28. Sharma, R., Nori, A.V., Aiken, A.: Interpolants as classifiers. In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 71–87. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31424-7_11

    Chapter  Google Scholar 

  29. Steyvers, M.: Computational statistics with MATLAB (2011)

    Google Scholar 

  30. Törnblom, J., Nadjm-Tehrani, S.: Formal verification of random forests in safety-critical applications. In: Artho, C., Ölveczky, P.C. (eds.) FTSCS 2018. CCIS, vol. 1008, pp. 55–71. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-12988-0_4

    Chapter  Google Scholar 

  31. Xue, B., Easwaran, A., Cho, N.-J., Fränzle, M.: Reach-avoid verification for nonlinear systems based on boundary analysis. IEEE Trans. Autom. Control 62(7), 3518–3523 (2016)

    Article  MathSciNet  Google Scholar 

  32. Xue, B., Fränzle, M., Zhao, H., Zhan, N., Easwaran, A.: Probably approximate safety verification of hybrid dynamical systems. In: Ait-Ameur, Y., Qin, S. (eds.) ICFEM 2019. LNCS, vol. 11852, pp. 236–252. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32409-4_15

    Chapter  Google Scholar 

  33. Xue, B., Liu, Y., Ma, L., Zhang, X., Sun, M., Xie, X.: Safe inputs approximation for black-box systems. In: ICECCS 2019, pp. 180–189. IEEE (2019)

    Google Scholar 

  34. Xue, B., Zhang, M., Easwaran, A., Li, Q.: PAC model checking of black-box continuous-time dynamical systems. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. (IEEE TCAD) (2020, to appear)

    Google Scholar 

  35. Yorsh, G., Musuvathi, M.: A combination method for generating interpolants. In: Nieuwenhuis, R. (ed.) CADE 2005. LNCS (LNAI), vol. 3632, pp. 353–368. Springer, Heidelberg (2005). https://doi.org/10.1007/11532231_26

    Chapter  Google Scholar 

  36. Zhan, N., Wang, S., Zhao, H.: Formal Verification of Simulink/Stateflow Diagrams: A Deductive Approach. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-47016-0

    Book  MATH  Google Scholar 

  37. Zhao, H., Zhan, N., Kapur, D., Larsen, K.G.: A “hybrid” approach for synthesizing optimal controllers of hybrid systems: a case study of the oil pump industrial example. In: Giannakopoulou, D., Méry, D. (eds.) FM 2012. LNCS, vol. 7436, pp. 471–485. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32759-9_38

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bai Xue .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xue, B., Zhan, N. (2020). Probably Approximately Correct Interpolants Generation. In: Pang, J., Zhang, L. (eds) Dependable Software Engineering. Theories, Tools, and Applications. SETTA 2020. Lecture Notes in Computer Science(), vol 12153. Springer, Cham. https://doi.org/10.1007/978-3-030-62822-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-62822-2_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-62821-5

  • Online ISBN: 978-3-030-62822-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics