Skip to main content

About Difference Schemes for Solving Inverse Coefficient Problems

  • Conference paper
  • First Online:
Optimization and Applications (OPTIMA 2020)

Abstract

The investigation deals with the choice of a finite-difference scheme for approximating the heat diffusion equation when solving the inverse coefficient problem in a three-dimensional formulation. Using the examples of a number of nonlinear problems for a three-dimensional heat equation whose coefficients depend on temperature, a comparative analysis of several schemes of alternating directions was performed. The following schemes were examined: a locally one-dimensional scheme, a Douglas-Reckford scheme, and a Pisman-Reckford scheme. Each numerical method was used to obtain the temperature distribution inside the parallelepiped. When comparing methods, the accuracy of the obtained solution and the computer time to achieve the required accuracy were taken into account. The inverse coefficient problem was reduced to the variational problem. Based on the carried out research, recommendations were made regarding the choice of a finite-difference scheme for the discretization of the primal problem when solving the inverse coefficient problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Zubov, V.I.: Application of fast automatic differentiation for solving the inverse coefficient problem for the heat equation. Comput. Math. Math. Phys. 56(10), 1743–1757 (2016)

    Article  MathSciNet  Google Scholar 

  2. Albu, A.F., Evtushenko, Y.G., Zubov, V.I.: Identification of discontinuous thermal conductivity coefficient using fast automatic differentiation. In: Battiti, R., Kvasov, D.E., Sergeyev, Y.D. (eds.) LION 2017. LNCS, vol. 10556, pp. 295–300. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-69404-7_21

    Chapter  Google Scholar 

  3. Zubov, V.I., Albu, A.F.: The FAD-methodology and recovery the thermal conductivity coefficient in two dimension case. In: Proceedings of the VIII International Conference on Optimization Methods and Applications “Optimization and Applications”, pp. 39–44 (2017). https://doi.org/10.1007/s11590-018-1304-4

  4. Albu, A.F., Zubov, V.I.: Identification of thermal conductivity coefficient using a given temperature field. Comput. Math. Math. Phys. 58(10), 1585–1599 (2018)

    Article  MathSciNet  Google Scholar 

  5. Albu, A.F., Zubov, V.I.: Identification of the thermal conductivity coefficient using a given surface heat flux. Comput. Math. Math. Phys. 58(12), 2031–2042 (2018)

    Article  MathSciNet  Google Scholar 

  6. Albu, A., Zubov, V.: Identification of the thermal conductivity coefficient in two dimension case. Optim. Lett. 13(8), 1727–1743 (2019)

    Article  MathSciNet  Google Scholar 

  7. Albu, A., Zubov, V.: On the stability of the algorithm of identification of the thermal conductivity coefficient. In: Evtushenko, Y., Jaćimović, M., Khachay, M., Kochetov, Y., Malkova, V., Posypkin, M. (eds.) OPTIMA 2018. CCIS, vol. 974, pp. 247–263. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-10934-9_18

    Chapter  Google Scholar 

  8. Evtushenko, Y.G.: Computation of exact gradients in distributed dynamic systems. Optim. Methods Softw. 9, 45–75 (1998)

    Article  MathSciNet  Google Scholar 

  9. Evtushenko, Y.G., Zubov, V.I.: Generalized fast automatic differentiation technique. Comput. Math. Math. Phys. 56(11), 1819–1833 (2016)

    Article  MathSciNet  Google Scholar 

  10. Albu, A., Evtushenko, Y., Zubov, V.: On optimization problem arising in computer simulation of crystal structures. In: Jaćimović, M., Khachay, M., Malkova, V., Posypkin, M. (eds.) OPTIMA 2019. CCIS, vol. 1145, pp. 115–126. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-38603-0_9

    Chapter  Google Scholar 

  11. Samarskii, A.A.: Theory of Finite Difference Schemes. Marcel Dekker, New York (2001)

    Book  Google Scholar 

  12. Gao, Ch., Wang, Y.: A general formulation of Peaceman and Rachford ADI method for the N-dimensional heat diffusion equation. Int. Commun. Heat Mass Transf. 23(6), 845–854 (1996)

    Article  Google Scholar 

  13. Thibault, J.: Comparison of nine three-dimensional numerical methods for the solution of the heat diffusion equation. Numer. Heat Transf. Fundam. 8(3), 281–298 (1985)

    MATH  Google Scholar 

  14. Peaceman, D.W., Rachford, H.H.: The numerical solution of parabolic and elliptic differential equations. J. Soc. Ind. Appl. Math. 3(1), 28–41 (1955)

    Article  MathSciNet  Google Scholar 

  15. Samarskii, A.A., Vabishchevich, P.N.: Computational Heat Transfer. Editorial URSS, Moscow (2003). (in Russian)

    Google Scholar 

  16. Douglas, J., Rachford, H.H.: On the numerical solution of heat conduction problems in two and three space variables. Trans. Am. Math. Soc. 8, 421–439 (1956)

    Article  MathSciNet  Google Scholar 

  17. Albu, A.F., Zubov, V.I.: Application of the fast automatic differentiation technique for solving inverse coefficient problems. Comput. Math. Math. Phys. 60(1), 18–28 (2020)

    Article  MathSciNet  Google Scholar 

  18. Albu, A.V., Albu, A.F., Zubov, V.I.: Control of substance solidification in a complex-geometry mold. Comput. Math. Math. Phys. 52(12), 1612–1623 (2012)

    Article  MathSciNet  Google Scholar 

  19. Albu, A.F., Zubov, V.I.: Investigation of the optimal control of metal solidification for a complex-geometry object in a new formulation. Comput. Math. Math. Phys. 54(12), 1804–1816 (2014)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir Zubov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zubov, V., Albu, A. (2020). About Difference Schemes for Solving Inverse Coefficient Problems. In: Olenev, N., Evtushenko, Y., Khachay, M., Malkova, V. (eds) Optimization and Applications. OPTIMA 2020. Lecture Notes in Computer Science(), vol 12422. Springer, Cham. https://doi.org/10.1007/978-3-030-62867-3_23

Download citation

Publish with us

Policies and ethics