Skip to main content

Two-Server Verifiable Homomorphic Secret Sharing for High-Degree Polynomials

  • Conference paper
  • First Online:
Information Security (ISC 2020)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 12472))

Included in the following conference series:

Abstract

Homomorphic secret sharing (HSS) allows multiple input clients to secret-share their data among multiple servers such that each server is able to locally compute a function on its shares to obtain a partial result and all partial results enable the reconstruction of the function’s value on the outsourced data by an output client. The existing HSS schemes for high-degree polynomials either require a large number of servers or lack verifiability, which is essential for ensuring the correctness of the outsourced computations. In this paper, we propose a two-server verifiable HSS (VHSS) model and construct a scheme that supports the computation of high-degree polynomials. The degree of the outsourced polynomials can be as high as a polynomial in the system’s security parameter. Despite of using only 2 servers, our VHSS ensures that each single server learns no information about the outsourced data and no single server is able to persuade the client to output a wrong function value. Our VHSS is significantly more efficient. When computing degree-7 polynomials, our scheme could be 3–10 times faster than the previously best construction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Albrecht, M.R., Player, R., Scott, S.: On the concrete hardness of learning with errors. J. Math. Crypt. 9(3), 169–203 (2015)

    MathSciNet  MATH  Google Scholar 

  2. Benaloh, J.C.: Secret sharing homomorphisms: keeping shares of a secret secret (Extended Abstract). In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 251–260. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7_19

    Chapter  Google Scholar 

  3. Boyle, E., Couteau, G., Gilboa, N., Ishai, Y., Orrú, M.: Homomorphic secret sharing: optimizations and applications. In: ACM CCS 2017. ACM Press, October/November 2017

    Google Scholar 

  4. Barbosa, M., Catalano, D., Fiore, D.: Labeled homomorphic encryption: scalable and privacy-preserving processing of outsourced data. IACR Cryptol. ePrint Arch. 2017, 326 (2017)

    Google Scholar 

  5. Boyle, E., Gilboa, N., Ishai, Y.: Function secret sharing. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 337–367. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46803-6_12

    Chapter  Google Scholar 

  6. Boyle, E., Gilboa, N., Ishai, Y.: Breaking the circuit size barrier for secure computation under DDH. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9814, pp. 509–539. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53018-4_19

    Chapter  Google Scholar 

  7. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic encryption without bootstrapping. TOCT 6(3), 13 (2014)

    Article  MathSciNet  Google Scholar 

  8. Beimel, A., Ishai, Y., Kushilevitz, E., Orlov, I.: Share conversion and private information retrieval. IEEE Conf. Comput. Complex. 2012, 258–268 (2012)

    MathSciNet  Google Scholar 

  9. Boyle, E., Kohl, L., Scholl, P.: Homomorphic secret sharing from lattices without FHE. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11477, pp. 3–33. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17656-3_1

    Chapter  Google Scholar 

  10. Brakerski, Z., Vaikuntanathan, V.: Fully homomorphic encryption from ring-LWE and security for key dependent messages. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 505–524. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22792-9_29

    Chapter  Google Scholar 

  11. Brakerski, Z., Vaikuntanathan, V.: Efficient fully homomorphic encryption from (standard) LWE. In: 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science, pp. 97–106, October 2011

    Google Scholar 

  12. Corrigan-Gibbs, H., Boneh, D., Mazières, D.: Riposte: an anonymous messaging system handling millions of users. In: Symposium on Security and Privacy (2015)

    Google Scholar 

  13. Catalano, D., Fiore, D.: Using linearly-homomorphic encryption to evaluate degree-2 functions on encrypted data. In: CCS 2015 (2015)

    Google Scholar 

  14. Cleve, R.: Towards optimal simulations of formulas by bounded-width programs. Comput. Complex. 1(1), 91–105 (1991). https://doi.org/10.1007/BF01200059

    Article  MathSciNet  MATH  Google Scholar 

  15. Cachin, C., Micali, S., Stadler, M.: Computationally private information retrieval with polylogarithmic communication. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 402–414. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48910-X_28

    Chapter  Google Scholar 

  16. Chen X., Zhang L. F.: Two-Server Delegation of Computation on Label-Encrypted Data. IEEE Transactions on Cloud Computing (2019)

    Google Scholar 

  17. Efremenko, K.: 3-query locally decodable codes of subexponential length. Proc. STOC 2009, 39–44 (2009)

    MathSciNet  MATH  Google Scholar 

  18. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: STOC 2009, pp. 169–178. ACM, New York (2009)

    Google Scholar 

  19. Goldwasser, S., Micali, S.: Probabilistic encryption. J. Comput. Syst. Sci. 28(2), 270–299 (1984)

    Article  MathSciNet  Google Scholar 

  20. He, Y., Zhang, L.F.: Cheater-identifiable homomorphic secret sharing for outsourcing computations. J. Ambient Intell. Humanized Comput. 1–11 (2020). https://doi.org/10.1007/s12652-020-01814-5

  21. Lai, R.W.F., Malavolta, G., Schröder, D.: Homomorphic secret sharing for low degree polynomials. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018. LNCS, vol. 11274, pp. 279–309. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03332-3_11

    Chapter  Google Scholar 

  22. Lyubashevsky, V., Peikert, C., Regev, O.: A toolkit for ring-LWE cryptography. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 35–54. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9_3

    Chapter  Google Scholar 

  23. Khurana, H., Hadley, M., Lu, N., et al.: Smart-grid security issues. IEEE Symp. Secur. Priv. 8(1), 81–85 (2010)

    Article  Google Scholar 

  24. Lauter, K., Naehrig, M., Vaikuntanathan, V.: Can homomorphic encryption be practical? In: CCSW, pp. 113–124. ACM (2011)

    Google Scholar 

  25. Martins, P., Sousa, L., Mariano, A.: A survey on fully homomorphic encryption: an engineering perspective. ACM Comput. Surv. 50(6), 83:1–83:33 (2017)

    Google Scholar 

  26. Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48910-X_16

    Chapter  Google Scholar 

  27. Sharma, S., Chen, K., Sheth, A.: Towards practical privacy-preserving analytics for IoT and cloud based healthcare systems. IEEE Internet Comput. 22(2), 42–51 (2018)

    Article  Google Scholar 

  28. Sadeghi, A.R., Wachsmann, C., Waidner, M.: Security and privacy challenges in industrial internet of things. In: Annual Design Automation Conference. ACM (2015)

    Google Scholar 

  29. Tsaloli, G., Liang, B., Mitrokotsa, A.: Verifiable homomorphic secret sharing. In: ProvSec, pp. 40–55 (2018)

    Google Scholar 

  30. Yoshida, M., Obana, S.: Verifiably multiplicative secret sharing. In: Shikata, J. (ed.) ICITS 2017. LNCS, vol. 10681, pp. 73–82. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-72089-0_5

    Chapter  Google Scholar 

  31. Zheng L., Chen C., Liu Y., et al.: Industrial scale privacy preserving deep neural network. arXiv preprint arXiv:2003.05198 (2020)

  32. LWE estimator tool Homepage. https://bitbucket.org/malb/lwe-estimator. Accessed 8 Jul 2020

Download references

Acknowledgments

The research was supported by Singapore Ministry of Education under Research Grant RG12/19 and National Natural Science Foundation of China (No. 61602304).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liang Feng Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, X., Zhang, L.F. (2020). Two-Server Verifiable Homomorphic Secret Sharing for High-Degree Polynomials. In: Susilo, W., Deng, R.H., Guo, F., Li, Y., Intan, R. (eds) Information Security. ISC 2020. Lecture Notes in Computer Science(), vol 12472. Springer, Cham. https://doi.org/10.1007/978-3-030-62974-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-62974-8_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-62973-1

  • Online ISBN: 978-3-030-62974-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics